
Efficient Multi-Scale Simplicial Complex Generation for Mapper

Matt Piekenbrock∗ , Derek Doran† , and Ryan Kramer‡

Abstract. Mapper is amongst the most widely used algorithms for topological data analysis. In its simplest
interpretation, Mapper takes as input a set of ‘point cloud data’ and a map defined on the data
to produce a graph that approximates the topological structure of the data. It is a powerful tool
for unsupervised data analysis and exploration, but relies on a number of parameters that heavily
influence the quality of the resulting construction. One crucial parameter, sometimes called the
overlap or gain parameter, controls the entire relational component of the output graph. Fixing
this parameter restricts the scale of the analysis, and in practice there is sparse guidance and few
guideposts to help an analyst determine what parameters may provide ‘better’ results. Subject to
moderately weak assumptions that are often met in practical settings, we introduce an indexing
structure able to produce all possible mappers of a dataset for any value of this crucial parameter.
As a result, once an initial mapper is computed, alternative mappers at different scales require just
a fraction of time to compute. We empirically demonstrate order-of-magnitude speed up across
mapper constructions over multiple datasets and discuss other theoretical advancements that may
follow from efficient multi-scale mapper constructions.

Key words. Mapper, Topology Theory, Unsupervised Learning

AMS subject classifications. 54H99, 54C05, 54J05

Introduction. Methods incorporating topology theory have rapidly emerged in the realm
of machine learning and data analysis rapidly in recent years. Topology theory explores
deformations of maps and spaces, and has been referred to as the natural evolution of the
notions of proximity and continuity [14]. Drawing theory from fields such as computational
geometry, algebraic topology, machine learning, and statistics, the development of topological
methods and algorithms that utilize these theories are becoming increasingly useful in studying
data-centric problems. The specific applications of these theories to data-centric analysis are
collectively being referred to as topological data analyses (TDA). TDA has recently been used
in applied research in domains such as microbiology [32], material science [17], and sensor
networking [7].

Perhaps the most popular tool for applied TDA is Mapper, developed by Singh et al. [30].
Mapper is a coordinatization framework capable of summarizing high-dimensional data sets,
or functions of them, and has proven its worth as a useful tool for data visualization [15],
genetic recombination characterization [12], and dimensionality reduction [30]. Mapper has
also found much success in commercial settings [1].1 In its simplest interpretation, Mapper is
a topologically-motivated framework for reducing high dimensional data into an interpretable
graph G(V,E) where vertices correspond to clusters of data, and edges correspond to in-

∗Department of Computer Science, Wright State University, Dayton, OH (piekenbrock.5@wright.edu, http://
www.wright.edu/∼piekenbrock.5/).
†Department of Computer Science, Wright State University, Dayton, OH (derek.doran@wright.edu, http:

//knoesis.org/people/derek/).
‡U.S. Air Force Research Laboratory, Wright-Patterson Air Force Base, OH (ryan.kramer.3@us.af.mil).
1Mapper’s framework lies at the core of the Ayasdi platform (https://www.ayasdi.com/solutions/)

1

mailto:piekenbrock.5@wright.edu
http://www.wright.edu/~piekenbrock.5/
http://www.wright.edu/~piekenbrock.5/
mailto:derek.doran@wright.edu
http://knoesis.org/people/derek/
http://knoesis.org/people/derek/
mailto:ryan.kramer.3@us.af.mil
https://www.ayasdi.com/solutions/
https://www.ayasdi.com/solutions/

2 MATT PIEKENBROCK, DEREK DORAN, AND RYAN KRAMER

teractions (non-empty intersections) between clusters. Mapper thus provides a simplified
representation of high-dimensional data that not only preserves certain topological structures
of interest, but is also amenable to qualitative analysis and visualization.

In this work, we derive closed-form expressions to compute the set of minimal parameter
values that, under relatively weak assumptions on the cover, produce ‘distinct’ topological
constructions with Mapper, with the exact definition of ‘distinct’ to be defined later in Sec-
tion 4. Using these expressions, we create a new approach to generate mappers more efficiently,
and we discuss some example applications our results may enable or enhance. We analyze
the storage and runtime complexities of our approach, and demonstrate its efficiency with
experiments performed on real-world data sets with realistic parameter settings often used in
practice. Additionally, we outline the connections between our analysis in relation to other
theoretical results involving Mapper.

Aside from the aforementioned contributions, we also make available an R [28] implemen-
tation of the data structure we use to construct the mappers, discussed further in Section 4,
for public use.2 To our knowledge, this is the first open-source implementation of such a struc-
ture for Mapper and incidentally, for the specific covers we consider, also the first open-source
implementation to our knowledge of the so-called multiscale mapper construction [8]. Finally,
of separate interest is the reproducibility of our experiments and results. All datasets, bench-
marks, examples, and source code associated with this research is publicly available online
and fully reproducible3.

In the next section, we elaborate on a few of the motivations for this effort and discuss some
of the related works. In Section 1, we discuss some prerequisite background material including
preliminary notation that will be used throughout the paper. We also recall Mapper’s formal
definition, and follow by giving an informal or algorithmic overview of the Mapper framework.
In Section 4, we derive a closed form solution for finding the minimal set of values for the
overlap setting. In Section ??, examples are given and discussed in detail to further convey
the motivation, significance, and utility of our solution. Finally, we discuss future applications
and work related to Mapper in Section 8.

Motivation. Mapper is a general framework capable of describing heterogeneous formats
of data, and hence naturally requires a number of parameters. Provided a reference map f , a
covering over a metric space {U}, a clustering algorithm C using some distance metric (M,d),
and their corresponding hyper-parameters, Mapper deterministically generates G. Mapper
requires several choices to be made by the user based on the goal of the analysis at hand.
Naturally, a large parameter space generally implies a large solution space: changing the value
of any particular parameter in may lead to a different set of solutions, which may in turn lead
to inconsistent interpretations and analyses. This is true for the construction Mapper produces
as well. Solutions which reduce this complexity would not only enable more robust analyses
of the topological solutions produced by Mapper, but may further accelerate the adoption and
reach of TDA tools and methods for data analysis.

The focus of this effort is to analyze the overlap parameter associated with a specific

2The Mapper source code is available here: https://github.com/peekxc/Mapper
3The source code the experiments and corresponding data is available here: https://github.com/peekxc/

IndexedMapper

https://github.com/peekxc/Mapper
https://github.com/peekxc/IndexedMapper
https://github.com/peekxc/IndexedMapper

EFFICIENT MULTI-SCALE SIMPLICIAL COMPLEX GENERATION FOR MAPPER 3

class of covers often used in practice with Mapper, which we describe further in Section 1.
We are interested in this parameter, as it solely determines the connectivity of the output
graph G, and thus the relational qualities of the data that are modeled. At the smallest
possible overlap value (0) the graph is completely disconnected, and as the overlap increases,
the graph becomes ever more connected. Unfortunately, there is little practical guidance on
how to determine this parameter value given a particular data set. If overlap is too high,
spurious connections may be shown in the output graph, conveying a relational structure that
is misrepresentative of the underlying data topology. Conversely, if it is too low, subtle yet
important connections may be missed.

Is there an optimal scale that best captures the topology of the data with respect to
Mapper’s overlap parameter? To answer this, it’s worth exploring how such scaling choices
are performed for other types of TDA. Consider a well-known topological construction of data
X, such as the Vietoris-Rips Complex at scale ε, which is a simplicial complex obtained by
adding n-dimensional simplices spanning the points of X when the pairwise intersection of
B(X1, ε)∩B(X2, ε)∩· · ·∩B(Xn, ε) is non-empty, where B(Xi, ε) = {x ∈ X | d(Xi, x) ≤ ε}. As
the sole parameter which determines connectivity, the ε parameter is analogous to the overlap
parameter of Mapper, and as Ghrist argues: “Despite being both computable and insightful,
the homology of a complex associated to a point cloud at a particular ε is insufficient: it is a
mistake to ask which value of ε is optimal” [13]. We extend this assertion to Mapper: a fixed
scale parameter is insufficient if the task is study the structure in the context of homology.
Rather, the solution is to look at the continuum of possible values towards understanding how
the complex changes across ranges of parameter settings. Intuitively, substructures which seem
to “persist” across parameter ranges forms a foundation for many approaches in Persistent
Homology [24]. This notion extends to exploratory use-cases of Mapper as well—rather than
choose an optimal scale to extract the “best” output of Mapper, a more practical solution
may be to allow an analyst to explore the space of possible parameter values. By viewing
multiple topological representations of the data at once, an analyst could compare and contrast
solutions, derive insights, and extract richer knowledge on the structure of the data. Even
better, perhaps the ideal solution may be to allow the analyst to move between representations
fluidly, such that they may view how the topological structure of the data changes with scale.
The analyst could then understand how sensitive the topological representation of the data (i.e.
the output graph of Mapper) is to changes in other settings of interest, pointing to directions
of stability and instability, and supplementing the theoretical guarantees persistence lends.

This notion of studying topological constructions on a continuum of parameter ranges
is not new. Methods measuring some notion of ‘stability’ or ‘persistence’ of a given real-
valued function with respect to its domain have proven useful in both theoretical and practical
instances of TDA [13]. In the context of the Mapper construction explicitly, theoretical
extensions which analyze Mapper at multiple resolutions are emerging [8, 9]. Nonetheless,
using such extensions to performing TDA on empirical data requires explicit assumptions of
how a Mapper construction is parameterized. Such types of empirical analyses may only be
enabled tractably, however, if the the solutions to various parameterizations can be computed
efficiently.

4 MATT PIEKENBROCK, DEREK DORAN, AND RYAN KRAMER

1. Background. This section provides a succinct review of the relevant notation and
topological constructs needed to describe Mapper and our corresponding extensions. We give
a concise summary of the Mapper algorithm, leaving the reader to refer to the original paper by
Singh et. al [30] for deeper background material. An even greater treatment of the topological
ideas underlying Mapper can be found in Carlsson’s exposition [5]. Still further, Munkres et
al. [26] provides a review of set theory and other foundational topological theory, Merkulov
et al. [21] provides more detailed information on simplicial complexes, and Munch [24] and
Ghrist [14] may be consulted for either introductory or high-level overviews TDA and its
applications, respectively.

1.1. Simplicial Complex. We start by defining a simplicial complex: the principle out-
come of Mapper. A simplicial complex is a pairK = (V, S) where V is a finite set of 0-simplexes
whose elements we’ll refer to as vertices of K, and S is a set of non-empty subsets of V that
satisfies that following two conditions:

1. p ∈ V ⇒ {p} ∈ S
2. σ ∈ S, τ ⊂ σ ⇒ τ ∈ S

Each element of σ ∈ S is called a simplex of K (or s-simplex, where |σ| = s + 1). Given an
s-simplex σ, its faces are the (s− 1)-simplices τ in S such that τ ∈ σ. The dimension of the
simplicial complex K is the largest k such that S is a k-simplex. Further define the j-skeleton
K(j) = {σ ∈ K | dimσ ≤ j} of K as the simplicial complex comprising all simplices of K
that are of dimension j or less. Since K(1) is composed of the 0 and 1 simplexes of K, it is
structured like a graph, and we will use the terms ‘vertex’ and ‘edge’ to describe its 0 and
1-simplexes, respectively.

1.2. Covers. Define a cover of a set X as a collection of open sets Uα whose union contains
X as a subset, i.e. U = {Uα}α∈A is a cover of X if X ⊆ ⋃α∈A Uα for some index set A. We
will always assume that each Uα is path-connected and a cover means a finite open cover. We
sometimes will subscript the cover with a parameter if the collection of its sets are depend on
the value of the parameter, e.g. we may write Uε to mean the collection of sets parameterized
by ε whose union forms a cover. We will often index sets with Z+ to imply order, i.e. for a
given collection of sets U = {Uα}α∈A, when we write U1, U2, . . . , Uk, its implied the index set
A is well-ordered.

1.3. Other notation. We will use lowercase symbols to represent scalars, capital symbols
to represent sets (or random variables, based on the context), and bold lowercase and capital
symbols to represent row vectors (1 × m) matrices (n × m), respectively. Unless otherwise
stated, we will use ◦ to denote the Hadamard product to expressing element-wise operations
between vectors and matrices. We make heavy use of other element-wise operations on equally-
sized vectors, and thus extend the inequality relations R ∈ {≤,≥, <,>} to vectors such that
x R y implies xi R yi ∀ i ∈ {1, 2, . . . , n} when n = |x| = |y|.

2. Mapper. We first introduce the Mapper algorithm [30, 5]. It is often useful to discuss
the algorithm in terms of its resulting topological construction/object [24]; we will use and
emphasized text whenever referring to a Mapper construction. We follow Singh et al.’s notion
by first defining Mapper using the topological version of the definition, and then the analogous
statistical version for point cloud data. We begin by with defining the Nerve of a cover.

EFFICIENT MULTI-SCALE SIMPLICIAL COMPLEX GENERATION FOR MAPPER 5

Definition 2.1 (Nerve of a cover). Given a finite cover U = {Uα}α∈A of a topological space
X, define the nerve of the cover U to be the simplicial complex N(U) whose vertex set is the
index set A, and where any subset {α0, α1, . . . , αk} ⊆ A spans a k-simplex in N(U) if and
only if Uα0 ∩ Uα1 ∩ · · · ∩ Uαk 6= ∅.
Suppose one is given a continuous map f : X → Z where Z is equipped with a cover U =
{Uα}α∈A . For each α, introduce an inverse map f−1(Uα) = {x ∈ X : f(x) ∈ Uα} and
write it as a decomposition of its path connected components {V (α, i)}, so that f−1(Uα) =⋃jα
i=1 V (α, i), where jα is the number of such path connected components. Define f∗(U) as the

cover of X where
⋃
α{V (α, i)} are its open sets. Obtaining a cover of X this way is sometimes

referred to as the pullback4 cover of X induced by U via f . With these components, Mapper
yields a topological construction as the nerve of the pullback cover f∗(U).

Definition 2.2 (Mapper). Let X and Z be topological spaces and let f : X → Z be a con-
tinuous map. Let U = {Uα}α∈A be a finite open cover of Z. The mapper construction of X,
or mapper for short, is defined to be the nerve of the pullback cover:

M(U , f) := N(f∗(U))

If one considers a real-valued function f : X → R as the map and a cover Uε of Z consisting
of intervals of length ε, the corresponding mapper M(Uε, f) may be thought of as an approxi-
mation of the Reeb graph (or, when f is a multivariate mapping, the Reeb space), where the
degree of the approximation is determined by the size of ε. In fact, Mapper was conjectured
to recover the Reeb graph precisely when ε→ 0 in its original exposition [30]. More recently,
a theoretical study of Mappers convergence to the Reeb graph (and space, resp.) of f as ε→ 0
has been explored by Munch et al. [25].

2.1. Algorithmic description. In what follows we give a more informal, step-wise descrip-
tion of Mapper from the point-of-view where one has a set of point cloud data (PCD) X ⊂ Rd
one is interested in performing a TDA on. A mapper is constructed algorithmically as follows:

1. Define a continuous map f : X → Z where Z is some reference metric space. Note
that because Z is a metric space, it’s assumed that it is possible to compute inter-point
distances between the points in the data of Z.

2. Select a finite covering U = {Uα}α∈A of Z.
3. Construct the subsets Xα = f−1Uα. Since f is continuous, the union of these sets for

all α form an open covering of X.
4. Given a clustering algorithm C, construct the set of clusters by applying C to each set
Xα. This induces a new covering of X parametrized by pairs (α, c) where c is one of
the clusters of Xα.

5. Construct a simplicial complex N(U) whose vertex set is the set of all possible such
pairs (α, c) and where a family {(α0, c0), (α1, c1), . . . , (αk, ck)} spans a k-simplex if
and only if the corresponding clusters have a non-empty (k + 1)-fold intersection.

Proceeding item-wise through these steps, one begins a TDA with Mapper by defining a
reference map, sometimes referred to as a filter function, which takes as input a set of PCD

4The term pullback has also been expressed as an operation[8]. We will also refer to it this way.

6 MATT PIEKENBROCK, DEREK DORAN, AND RYAN KRAMER

U = {Uα}α∈A

Xα = f−1Uαf : X → Z

(1-skeleton example)

f∗(U) → M(U , f)

C(Xα) → f∗(U)

Figure 1: Mapper example. The left panel shows the mapping of a given data set X → Z via
f (where Z ∈ R2) and four overlapping sets that construct the covering U of Z. The center
figure shows the isolation the points in each of these sets that is used for partial clustering
and the connected components represent the results of this clustering. Points which appear
in multiple subsets are connected by dashed lines. The final figure on the right represents the
1-skeleton realization of the simplicial complex constructed from the nerve of the covering.

defined in the data space and maps to an appropriate metric space, which we’ll refer to as the
filter space or Z-space. The mapper is highly dependent on this function. The specific choice
of this function is inevitably application-specific, however details on common functions that
may of interest are discussed in [6, 30] and also in Section 6.1. In step 2, a parameterized
covering is constructed on the Z-space, partitioning the filtered data into (often overlapping)
subsets based on which set of the covering Uα they intersect. We will frequently refer to
these sets as level sets, due to their relaxed interpretation as such (this is elaborated on in
the next section). Because level sets generally overlap, any given data point may be within
multiple level sets. Observe that since f is continuous, the constructed cover of Z also forms a
covering of X, via the pullback operation f∗(U). Mapper relies on the idea of partial clustering,
wherein subsets of X are clustered independently of other subsets as a means of simplifying
the data into topological prototypes, where each prototype is realized as a vertex in the
resulting construction, and each vertex represents cluster of points. Because the subsets to
perform the clustering on are determined by the cover constructed in the Z-space, mapper
can be thought of as a topological summarization of the data expressed through the range
space of a mapping. Non-empty intersections of these vertices with other vertices form the
higher dimensional simplexes in the resulting simplicial complex. Figure 1 illustrates, at a
high level of abstraction, how the Mapper algorithm creates a simplicial complex from a given
set of data. When we restrict ourselves to the 1-skeleton, Mapper essentially produces a graph
describing topological information about a data set and a map defined on it. The degree of
the summarization is expressed by the coarseness of the cover equipped on the codomain of
the map. In the next section, we go more in-depth on how these covers are often constructed
in practice.

EFFICIENT MULTI-SCALE SIMPLICIAL COMPLEX GENERATION FOR MAPPER 7

2.2. Cover Parameterization. Theoretically, Mapper makes no assertions restricting the
shape of the sets Uα used to construct the covering. For example, Figure 2 of [30] mentions two
example covers of the parameter space in R2, one with rectangles and another with hexagons.
Indeed, the Mapper construction is very general—there are numerous ways to construct a
suitable covering. Consider the following options for U = {Uα}:

1. Uα = (−∞, α) for α ∈ R.

2. Uα = (α− ε, α+ ε) for α ∈ R , for some fixed ε > 0.

The first option describes a cover comprised of sublevel sets, which collectively may be com-
bined to represent a class of hierarchical structures sometimes referred to as merge trees,
while the second partitions points of X into (ε-thick) level sets (also sometimes referred to
as interval-level sets), which induce a relaxed notion of Reeb graphs. Because (ε-thick) sets
represent intervals of length ε in the image of f , the cover of intervals of length ε is commonly
denoted as Uε. In this effort, we will focus on a few specific implementations of covers com-
posed of intervals. We will always refer to the generalized intervals as intervals (represented by
Uα), and the corresponding set of points in their preimage f−1(Uα) as level sets, respectively.

2.3. Multiresolution Structure. Any mapper construction has a natural ‘multiresolution’
or ‘multiscale’ structure [30]. If one considers two covers U = {Uα}α∈A and V = {Vβ}β∈B of a
space X, then one may define a map of covers from U to V by constructing a map ξ : A→ B
such that Uα ⊆ Vξ(α) for all α ∈ A. Given such a map, there is an induced map of simplicial
complexes N(f) : N(U) → N(V) given on the vertices by the map ξ. If we have a family of
covers U = {U1,U2, . . . ,Un} and a map of covers for each i ∈ [1, n−1], ξi : Ui → Ui+1, then one
may construct a diagram of simplicial complexes connected by the induced simplicial maps
between them:

N(U1)
ξ1→ N(U2)

ξ2→ . . .
ξn−1→ N(Un)

This extends to the case of pullbacks as well: given a space X, a map f : X → Z, and a
family of covers U equipped to Z, there is a corresponding family of pullback covers f∗(U)
and a diagram of induced simplicial maps that follows. It can be shown that the induced
simplicial maps associated with any two maps of covers are also contiguous, implying they
induce identical maps at the homology level [8]. We do not address these in detail in our
methodology, however see Section 7 for a small discussion on the matter.

3. Main Results Overview. The focus of this paper is to show an efficient computation
of a mapper at multiple scales, focusing on reducing the complexity of computing the graph
representation of Mapper. This amounts to improving the time to compute successive covers
and their corresponding 0 and 1-skeletons. Our strategy is to compute the mapper once for
a fixed number of non-overlapping intervals, then use the filtered points Z to compute an
indexing structure capable of updating the graph for successive values of ε efficiently. The
intuition is that, as ε changes, not all of the point memberships associated with the sets in
the cover change. This observation is crucial, because if any of these point sets change, so

8 MATT PIEKENBROCK, DEREK DORAN, AND RYAN KRAMER

too will the clustering, implying all resulting simplices must be re-evaluated.5 However, if the
increase in ε is relatively small, not all sets in the cover must have their corresponding simplices
recomputed: only the intervals whose corresponding level sets change (i.e. by the addition
or removal of at least one point) ought to be considered. By ingraining the information of
which intervals change into a data structure that can be easily queried, we can identify and
minimize the number of simplices of a mapper which need to be recomputed between successive
ε parameterizations. Since the number of intervals exponentially increases with the dimension
of Z6, the disparity between the total number of intervals and the set of intervals whose level
sets need have changed also scales in a similar fashion.

We introduce the assumptions made about the family of covers used to compute the
mappers of varying scale, and how we utilize each assumption in turn. Although our primary
contribution is a structured methodology for updating mapper for any parameterization of the
cover, we note that our methods may be used to enable other types of analysis, as we will
demonstrate later. We introduce the concepts and terminology for the d = 1 case first, and
then discuss generalizing to higher dimensions after in Section ??.

4. Methodology. Our approach makes specific assumptions about the geometry of the
family of covers used to construct the mapper. In what follows, we assume one already has
defined a map f : X → Z, wherein X ⊂ RD, Z ⊂ Rd. We will generally assume d << D.
We will consider the generic family of covers of generalized intervals, formed by the Cartesian
product of tuples of the form:

U [r, g] = {Uα}α∈A =
∏d
i=1(ai, bi)

r = `(Uα)

g =
`(Uα ∩ Uα+1)

`(Uα)

(1)

where r ∈ R, g ∈ [0, 1), the index set A consists of integers {1, 2, . . . , k}, and ` is the Lebesgue
measure on R. This a 2-parameter family of coverings, wherein r conveys the length of the
interval, and g determines the degree to which adjacent intervals overlap. It’s common to limit
the covering dimension by restricting g < 1

2 in order to prevent non-trivial 3d-fold intersections,
which keeps the mapper from getting too densely connected. To connect the notation given
in Section 2.2, r has length 2ε. Since these intervals are constructed on the range of f , their
preimages decompose the data X into a (relaxed) notion of level sets called interval-level sets,
defined as follows:

Interval-level set. Given a map f : X → Z and a cover U equipped to Z, the interval-level
set is defined as:

Lα(U , Z) = f−1(Uα) = {x ∈ X | f(x) ∈ Uα}
We consider all covers in this family obeying the following properties:

5This implication may be relaxed if one makes further assumptions on the algorithm used to perform the
clustering. We choose to remain agnostic to this choice, focusing instead on an approach that works for any
clustering algorithm.

6This is assuming Z is equipped with a cover parameterized by a parameter k, where k represents the
number of intervals to distribute along each dimension.

EFFICIENT MULTI-SCALE SIMPLICIAL COMPLEX GENERATION FOR MAPPER 9

Assumptions about the form of the covers:
1. There is a fixed number of intervals along each dimension.
2. All subsets of U are in the shape of iso-oriented rectangles.7

3. The sets Uα have reflective symmetry about the center of the range of Z.

Note that we do not assume r is necessarily constant for each interval in the cover. Assumption
(3) requires the lengths of the intervals reflect about the center (except for the central most
interval, if the number of intervals is odd). That is, if one has the cover U = {U1, U2, . . . , Uk}
consisting of k intervals where k is even and each interval Ui has length ri, then assumption
(3) implies that r1 = rk, r2 = rk−1, and so on.

We first consider the one dimensional case where f : X → R and all interval lengths are
equal. We would like to represent any arbitrary such cover of Ur where r may be any length
in the range

r̄ < r <∞
where r̄ is the smallest interval length such that Ur̄ covers Z. Intuitively, if each interval
is exactly of length r, the smallest interval size that contiguously covers the full range of Z
will have size r = k−1range(Z) (and g = 0). Denote this interval length as the base interval
length. There are, of course, an infinite number of such cover parameterizations in the range
r̄ < r < ∞. However, for a fixed data set X, observe that the mapper does not have infinite
number of representations if we consider a specific covering scheme. For example, consider
two mappers constructed from a fixed number of intervals k, one the cover Ur and one with
Ur′ where e.g. r′ = r + ε. If the data set X is considered fixed, and if ε is small enough,
the level sets may not change between the two covers. Assuming the clustering algorithm is
deterministic, if the the level sets do not change between two successive covers, there will be
no new simplices introduced or removed between the two Mapper constructions: they will be
identical. This motivates a notion of distinction between covers, and as a by-product, between
mapper constructions.

Distinct Cover. Given a map f : X → Z which produces a fixed set of point cloud data
Z ⊂ Rd equipped with two covers U = {Uα}α∈A and V = {Vα}α∈A. We interpret two covers
U and V over the image of f as distinct if and only if:

∃α ∈ A s.t. Lα(U , Z) 6= Lα(V, Z)

Thus, if one has two mapper instances M(U , f) and M(V, f) constructed with f , they are also
considered distinct if U and V are distinct.

4.1. Computing cover parameters. Consider a cover U = {Uα}α∈A meeting the assump-
tions discussed in the previous section. Each of the k intervals in the cover has the form:

Uα = [a, b], a < b, a, b ∈ R

Definition 2 motivates considering which interval lengths (r, r′), r < r′ produce the sequence

Ur → Ur′
7A set of rectangles on a plane are said to be iso-oriented or iso-aligned if their edges lie parallel to the

coordinate axes. They have also been referred to as axis-parallel intervals.

10 MATT PIEKENBROCK, DEREK DORAN, AND RYAN KRAMER

such that there is no parameter r∗ between r < r∗ < r′ that yields a cover distinct from
the covers Ur and Ur′ . To find this sequence, first consider a cover meeting our assumptions
previously discussed, with the additional assumption that the center of each interval a+b

2 in
the cover is fixed. Thus, each interval is parameterized by the same length r = |a− b|, and so
as r → ∞, each point zi ∈ Z will intersect at most |U∞| = k intervals. Since the centers of
the intervals are fixed and they are all the same length, the order in which these intersections
occur is fixed. Since every point intersects exactly one interval when r is at its smallest value
r̄, and there are k will intervals total, then as r →∞ there are k−1 intervals where any given
point will intersect an interval it did intersect when r = r̄. By the definition of distinction
given by 2, if we have n distinct points in R, there are m = n(k − 1) values of ε producing
distinct constructions (excluding the case where g = 0).

We would like to to determine these covering parameters a priori for a given data set X,
before computing any mappers, and so we discuss a general strategy for handling rectangular
covers of any dimension that take the form given by equation 1. Determining these values
requires explicit analytical expressions for the covers—we discuss two popular covering strate-
gies that fit our assumptions in the appendix B. The rectangular cover is generated by first
finding the range of the function f restricted to the set of given points Z. The range vector
is the component-wise difference between the extrema:

z̄ = max (Z)−min (Z)

Given a user-supplied input for either the interval length and overlap (r, g) or the number of
intervals and overlap (k, g), a cover U consisting of overlapping intervals may be constructed.
Notice that if k is fixed and g = 0, r is completely determined by the range the data, and vice
versa. Recall that setting g = 0 yields the base interval length:

(2) r̄ = k−1z̄

When the intervals are length r̄, every point zi ∈ Z intersects exactly one interval, and there
are no non-empty intersections between intervals. It’s clear that the interval length must
satisfy r ≥ r̄, otherwise the intervals would not contiguously cover the range of Z, which
also implies g ≥ 0. Now consider a cover composed of k intervals, U = {U1, U2, . . . , Uk}, and
denote the map associating each point to its corresponding interval in the cover as φ : Z → A,
where A = {1, . . . , k} such that if a point z lies in Uj , where 1 < j < k, then φ(z) = j.
Suppose we wish to use these corresponding indices to compute the distance from every point
z to its corresponding (k − 1) intervals. This distance inevitably depends on which halfspace
the point lies in. If zi lies in Uj , where 1 < j < k, then φ(zi) = j. If zi < aj +

rj
2 , then its

distance to Ul for all l ∈ [1, j − 1] is |bl − zi|, whereas its distance to Uh for all h ∈ [j + 1, k] is
|ah − zi|.

Define a distance matrix for all such points and sets as D ⊂ Rn×(k−1). Our observation
is that a number of popular covers used in practice may have all possible distinct values of
r̄ < r < ∞ expressed as a function of these distances D (see Appendix B). We denote this
discrete set of parameters Σ = {ε1, . . . , εm}. That is, for a fixed k and Z, Σ represents all
interval length parameters that produce distinct covers for a given family of covers, and a
result, distinct mapper constructions.

EFFICIENT MULTI-SCALE SIMPLICIAL COMPLEX GENERATION FOR MAPPER 11

Having the set Σ precomputed (without creating any mapper constructions) motivates the
creation of an indexable function ζ which produces the equivalent mapper for any parameter
r̄ < r < ∞ where r ∈ R+. Since all covers in this sequence are distinct, their mappers are
distinct, implying that although we have the finite sequence

Uε1 → Uε2 → · · · → Uεm

we are able to index an arbitrary interval length r to some εi ∈ Σ. That is, since Σ is
comprehensive, the sequence may defined over all of R+. To demonstrate this, we may declare
Uζ(r) where r ∈ R+, and ζ as

ζ(r) = max{p ∈ Z+ | εp ≤ r, εp ∈ Σ}

The assumption that the centers of the intervals are fixed for all covers in ζ(r) can be relaxed,
as we show in the next section, if the covers have reflective symmetry about the center.

4.2. Computing the level sets. We would like to use the information Σ provides to
improve the efficiency of generating any cover indexed by ζ. The computational problem here
is to quickly compute the level sets of these indexed covers in the sequence:

(3) ∀ r ∈ R+
(
L(Uζ(r), Z) = L(Uε1 , Z)→ L(Uε2 , Z) · · · → L(Uεm , Z)

)

where, when the data set Z is fixed in the sense that no points are to be added or removed,

(4) ∀ r ∈ R+
(
L(Uζ(r), Z)⇔ L(Ur, Z)

)

Conceptually, each cover Uε∗ is associated with a collection of k interval-level sets. Obviously,
precomputing and storing the entire sequence is feckless. An alternative but näıve way to
enable the construction of any cover in this sequence is to create a set of k lists corresponding
to the level sets L(Ur̄, Z), and then update each of the lists accordingly as r → ∞. When
r = r̄, there is no overlap between the subsets of the cover, and thus the storage requirement
for the level sets is O(n). However, the storage becomes more redundant for each level set as
r increases, requiring upwards of ≈ O(nk) as r → ∞. Although much of the discussion that
follows is from the perspective where Z is one-dimensional (we discuss how it extends to higher
dimensions 4.5) it’s worth noting that this näıve strategy becomes particularly inefficient for
higher dimensions, in the worst case requiring O(nκ) memory when g > 0, where κ represents
the highest order k-fold intersection in the cover. For covers of the type shown by equation 1,
κ is on the order of kd, where d is the dimension of the filter space.

We can take advantage of the assumptions we’ve made about the family covers to reduce
this storage requirement. Consider two covers, each composed of k intervals, where the length
of every interval in the first cover is r and in the second r′, where r′ > r. Denoted the two
covers as Ur and Ur′ respectively. Since r′ > r, assuming the intervals are always positioned
equally distance from each other, the intervals Uα ∈ Ur′ properly contain the intervals in
Ur, and a map of covers may be formed to obtain the multiresolution structure discussed in
Section 2.3. This structure shares many characteristics with the principle of decomposability
often used in many spatial indexing methods. A problem is said to decomposable if its solution

12 MATT PIEKENBROCK, DEREK DORAN, AND RYAN KRAMER

(

1 2 3 4 5 6 7 8 9 (10)

1 2 3 4 5 6 7 8 9 (10)

(

Ur

Ur0

r

r0
Figure 2: Example of the notion of standard ranges and their corresponding canonical covers
between two covers U = Ur and V = Ur′ of some space Z. In this figure, each cover consists
of k = 5 intervals, and thus 2k segments, with the last segment always being trivial. The
indices corresponding to segments are shown above each standard range, delimited by the
dashed gray vertical lines. Note how any given pair Uα and Vξ(α) satisfying Uα ⊆ Vξ(α) may
be expressed using the same canonical cover, i.e. as the union of the same set of segments.
For example, the second interval of both covers may be expressed as the union of segments
{S2, S3, S4}.

can be efficiently calculated by breaking the problem input into small, overlapping subsets,
computing the partial solutions for these subsets, and then recombining to form the final
solution. In what follows, we show how one may decompose L(Uζ(r), Z) using principles
inspired by geometric range searching.

In order to decompose L(Uζ(r), Z), for now let Z ⊂ R (i.e. d = 1). Each cover interval
Uα has an associated set of endpoints [a, b], a, b ∈ R, a ≤ b. If there are k such intervals, there
are 2k endpoints. Now consider the sorted array of non-decreasing endpoints E composing U .
Since E is fixed, the covers in U may be indexed by an integer range [s, t], s < t. We use the
following definition:

Canonical Covering. The interval cover Uα = [a, b] is in the canonical covering of the range
[s, t], where s, t ∈ Z+ if [a, b] ⊆ [E [s], E [t]].

It can be shown that any range [s, t], 1 ≤ s < t ≤ 2k may be decomposed into at most
dlog2(t− s)e+ blog2(t− s)c − 2 subintervals [18]. Now consider any two covers U = {Uα}α∈A
and V = {Vβ}β∈B of a space Z ⊂ R connected by a map of covers ξ : A → B from U to V
such that Uα ⊆ Vξ(α) for all α ∈ A. Assume both covers U and V satisfy 0 < g < 1

2 , i.e. the
interval lengths of each cover are restricted such that no non-trivial threefold intersections are
observed, and are parameterized by interval lengths r and r′, where r′ > r, denoted as Ur
and V ′r, respectively. Then a pair of intervals from Ur and V ′r mapped by ξ have equivalent
canonical covers (see a proof in appendix 1). Figure 2 illustrates this concept.

The equivalency of the canonical covers for varying interval covers enable a decomposition
of the covers into indexed canonical covers, which allows the entire L(Uζ(r), Z) to be expressed
more compactly. Going forward, we’ll refer to the disjoint ranges in the canonical cover of U

EFFICIENT MULTI-SCALE SIMPLICIAL COMPLEX GENERATION FOR MAPPER 13

as segments, indexed by F , i.e.

S = {Si}i∈F =

{[
E [s], E [t]

)
| s, t ∈ F

}

We can represent any range in a given cover U = {Uα}α∈A as a union of disjoint segments by
a map between the index set of the cover A = {1, 2, . . . , k} and the index set of the segments
F = {0, 1, 2, . . . , 2k − 1} as ω : A → F , where ω(α) = {i ⊆ F | Si ∩ Uα 6= ∅}. The level sets
can be dynamically expressed via ω:

Lα(Uα, Z) =

{ ⋃

i∈ω(α)

Si ⊆ S
}

In summary, instead of creating lists to represent the level sets for each cover in the sequence,
we simply express the level sets as a union its corresponding segments. Since these segments
are disjoint, and since each point into exactly one segment, there is no redundancy in this
representation of the level sets.

Since the level sets are no longer stored explicitly, each level set must be dynamically
computed via ω. This requires a bit of index tracking: we represent U = {Uα}α∈A with an
integer indexed set Ui, i ∈ Z+, and then map that index to a pair of ordered segment indices
(ωl(i), ωh(i)) representing the lower and upper endpoints that enclose the canonical cover of
Ui. Due to the reflective symmetry assumption we make regarding the cover, there are only k
such maps, for all g ∈ [0, 1). To see this, observe that when g = 0, the canonical cover of any
interval U is simply the union of two immediately adjacent segments, i.e. the two endpoints
the interval corresponds too. As shown previously, this mapping will also be constant for
0 < g < 1

2 .
Furthermore, observe that the left-and-right-most endpoints E maintain their positions in

the ordering—all other endpoints swap their relative positions by 1. To keep the mapping
constant for any g, we need only track the order the endpoints follow for varying g. As g → 1,
this relative ordering of E changes just k times, implying these indices may be precomputed
and stored in a (k× 2k) lookup table, based on the value of g. As a result, up to a reindexing
of the order of the segments, the map A → F is given by [2i, 2i + 1) where i ∈ [0, k − 1] can
be fixed, allowing retrieval of which segment indices comprise each level set in constant time.
Here is an example:

Endpoints Ordering Example

Consider the case where there are k = 3 intervals {U1 = [a1, b1], U1 = [a2, b2], U1 = [a3, b3]},
and d = 1. When g = 0, the endpoints of the intervals follow the order {a1, b1, a2, b2, a3, b3}.
When g ∈ (0, 1/2), they follow the order {a1, a2, b1, a3, b2, b3}, and when g ∈ [1/2, 1), they
follow {a1, a2, a3, b1, b2, b3}. Since the intervals have reflective symmetry, internal endpoints
always ‘swap’ in ordering with the interval that is immediately adjacent. Since there are
always 2k endpoints and each ‘swap’ corresponds to 2 endpoints changing positions, there
are only k ranges of g where the ordering changes. Table 1 illustrates this process in-depth.

In summary, by decomposing the cover into disjoint segments, each of the n points of
Z is associated with exactly one of 2k segments, and tracking which segments map to the

14 MATT PIEKENBROCK, DEREK DORAN, AND RYAN KRAMER

Overlap range

g = 0

g ∈ (0, 1/2)

g ∈ [1/2, 1)

S ordering

S1 S2 S3 S4 S5 S6

0 1 2 3 4 5

0 2 1 4 3 5

0 2 4 1 3 5

U1 U2 U3

ωl(1) ωh(1) ωl(2) ωh(2) ωl(3) ωh(3)

0 1 2 3 4 5

0 2 1 4 3 5

0 3 1 4 2 5

Table 1: Supplementing the example below, two (k×2k) tables depict the order the segments
and their corresponding maps follow when k = 3. The first table shows which range of g the
rows correspond too. The second shows the order the segments follow, based on their initial
ordered assignment when g = 0. The third shows the relative order the segments from the
previous table follow, which allow the mapping ω(i) = [2i, 2i + 1) to stay intact. Note the
second table is for illustrative purposes and does not need to be directly computed.

appropriate interval in the cover requires looking up the appropriate row in a precomputed
(k × 2k) table, whose values depend on g. Thus, the storage required to represent the cover
Ur for any r ∈ [r̄,∞) as a union of segments reduces to O(n + 2k + 2k2) = O(n) since k is
constant, assuming that the amount of data n exceeds the number of segments.

4.3. Computing Point Assignments as r Changes. The segment each point is assigned
to depends on the interval length of the cover, which is expected to vary when computing
mappers at multiple scales. We discussed how we may compute the discrete set of interval
length values Σ wherein the mapper changes in Section 4.1, and that if we compute all such
values, then |Σ| = m = n(k− 1). We also discussed how we may use Σ to create an indexable
function ζ which can produce any distinct cover Uζ(r) for r ∈ R+. With a slight abuse of
notation, denote the cover at index p as Up = Uζ(εp), where εp ∈ Σ, and p ∈ [1,m]. Each εp
carries with it specific information: it represents the minimal interval length wherein between
εo < εp < εq, ∀ o, p, q ∈ [1,m], each cover Uo,Up,Uq is distinct, and if p = o+1 = q−1, then the
level sets of each successive cover differ by exactly one point. Since these values are minimal,
intuitively they represent the critical values wherein a given point z ∈ Z lies exactly on one of
the boundaries, or endpoints, of two overlapping intervals at parameterization εp. That is, if
one has the points assigned to segments corresponding to Up computed and wishes to compute
level sets Uq, where q = p + 1, then the only modification that needs to be performed is the
reassignment of a single point to a new segment.

In what follows we assume one has a cover already computed at some index p, and is
concerned with computing the cover at some target index q, again where p, q ∈ [1,m]. Denote
with α+

p , α
−
p ∈ A the adjacent interval indices the point z lies on at index p, where α+

p > α−p .
For all values where p < q, the critical values of r always occur at the boundary of the
intervals composing U , and the segments associated with either α+

p or α−p can be inferred
from the table discussed in the previous section. To store these changes, observe that between
rp = 0 and rq = ∞, each point will either merge to or be removed from at most k − 1
sets in the cover. We refer to this length k − 1 ordered sequence of (interval) indices a
given point zi ∈ Z adheres to its indexed path, and denote it as Pij , where the first index
i denotes the points index (i ∈ [1, n]), and the second index j denote the points current
index into its k − 1-length path. Observe the number of unique index paths followed by

EFFICIENT MULTI-SCALE SIMPLICIAL COMPLEX GENERATION FOR MAPPER 15

any given point will be relatively small, depending on k. If a point z ∈ Z intersecting the
interval Uk will intersect the upper endpoint of the interval Uk−1 at the length rp, then by
our reflective symmetry 4 assumption about the sizes of the intervals in the cover, the point
must intersect Uk+1 as r increases before it intersects Uk−2. Since there are only 2 possible
paths any given point intersecting an internal interval will follow, and there is just 1 ordered
path followed by points in the outside intervals, then if the cover consists of k intervals, there
are only 2(k − 1) unique index paths. Furthermore, due to assumption (3) of the cover, the
path can be calculated a priori based on which halfspace of the set each point lies in when
g = 0, without computing the sequence indexed by ζ explicitly. An example is shown below:

Path example

Consider the case where one has a cover consisting of k = 3 intervals, i.e. U = {U1, U2, U3},
where each interval Up has the range [ap, bp], and ap < ap+1 ≤ bp < bp+1. If at g = 0 a
given point z lies in U1, and if each interval is uniformly parameterized by the same length
r, then as g → 1 the point must intersect U2 first, and then U3. The same situation occurs
in reverse when z lies in U3. If z lies in U2, the path may be U1, U3 or U3, U1, depending
on whether z lies to the left or to the right of the center of U2. In total, there are 4 unique
indexed paths that any point z ∈ Z could follow: {{1, 2, 3}, {3, 2, 1}, {2, 1, 3}, {2, 3, 1}}.

Thus, with a cover over R, there are at most 2(k−1) unique paths taken by any point starting

at r = r̄, and as r → ∞. For each point, we only need to store the following three pieces
of information: (1) which of the 2(k − 1) unique paths a the point follows; (2) an index
into the points path representing its current position; and (3) the segment index the point is
assigned to. By storing this information, we’re able to track how two covers Up → Uq differ.
The third piece of information is slightly redundant in the sense that each point is already
associated with a segment, but is useful for caching purposes to prevent an O(n + k) point-
segment correspondence lookup, implying the above point information requires O(3n) storage.
It’s worth noting that these three pieces of indexing information may be stored contiguously,
which is of practical importance for runtime concerns. Informally, we use this preprocessed
information recording which interval(s) each point intersects at any given interval length value
to minimize the number of operations needed to ‘update’ the mapper computed at a given
index p to a mapper at a given q, discussed in the next section. Intuitively, the smaller |p− q|
is, the fewer number of operations are required to update the mapper object.

4.4. Computing the simplicial complexes. We use the indexing structures discussed
above to move fluidly between the mapper at index p to the mapper at index q, i.e. to
compute the transformation

N(f∗(Up))→ N(f∗(Uq))

More exactly, we would like to compute the transformation efficiently, such that the number
of operation to obtain N(f∗(Uq)) given N(f∗(Up)) is smaller than the number of operations
to compute N(f∗(Uq)) from scratch.

Consider one has a mapper built with a cover parameterized by rp, and wants to compute a
new mapper with a cover parameterized by rq, where p, q ∈ [1,m]. As discussed in Section 4.1,
if we treat Z as fixed, we can compute and store the values Σ = {r1, r2, . . . , rm} ahead of time,

16 MATT PIEKENBROCK, DEREK DORAN, AND RYAN KRAMER

where at each index i ∈ {1, 2, . . . ,m}, exactly one point is changing segments (and as a result,
only one level set is changing per index). If we process this sequence i ∈ [p, p+ 1, . . . , q], p < q
in order, there are at most c = |p−q| point-to-segment reassignments. The converse argument
holds when q > p. Each index α ∈ A whose corresponding level set is modified in the sequence
[p, q] implies an update to the simplicial complex. Specifically each index i ∈ [p, q] implies
updating a k-simplex if the intersection of the intervals (α+

i , α−i) corresponds to non-empty
(k + 1)-fold intersection. Between the indices [p, q], we populate which indices have had
their level set representation modified, denoted as αpq. Since we are agnostic to the clustering
algorithm used, between p and q at most |αpq| indices will require their corresponding simplices
to be updated, where |αpq| is at most |A| = k. When the output is a graph G(V,E), this
essentially involves tracking which vertices and edges need to be recomputed or modified. To
track the vertices that need to be updated, given the graph of a mapper at index p, Gp(V,E),
we maintain a O(k + |V |)-sized surjective map ν : A → V matching which vertices belong
to each index α ∈ A of the cover, and update ν(αpq) accordingly. To track the edges, we
record the pairwise combinations of indices (αpq, α

′
pq) that have overlapping intervals, as well

as any additional pairs (αi, αj) connected by pre-existing edges in Gp(V,E) associated with
the vertices in changed by αpq. Denote the edges changed in the sequence from p → q as

ε(αpq). Since there are
(
k
2

)
combinations, so |ε(αpq)| is (loosely) at most O(|ν(αpq)|2 + |Ep|)

when |rp − rq| is large, where Ep corresponds to the edges of Gp(V,E), but in practice this is
typically much smaller when the overlap is small. The complexity of these update operations
depends on the structure used to store G as we discuss in Section 6.1.

4.5. Generalizing to higher dimensions. To generalize to higher dimensions, we take
advantage of our assumption that the cover is composed of axis-parallel rectangles. As a result,
with a few exceptions, we may treat each dimension independently. The only modification
we need of the above are the complexities involving k. When the filter space Z ⊂ Rd for
d > 1, the parameters of the cover are vector-valued. For example, the number of sets in the
cover is parameterized by a vector k = (k1, k2, . . . , kd) representing the number of intervals to
distribute along each dimension. In this case, there are k̃ =

∏d
i=1 ki sets in the cover.

Although k̃ is exponential in d, because we consider a simple covering strategy where
all the sets in the cover are axis-parallel, the complexities of most of the substructures our
approach scales multiplicatively with d. For example, since the r parameterizations given by
Σ are all based on orthogonal distances, |Σ| need only be

∑d
i=1 n(ki−1) rather than n(k̃−1).8

We also require an indexing vector I = order(Σ) computed before Σ is sorted to track which
points are involved with each r ∈ Σ of the same size as Σ. When n >> k̃, these are the largest
structures needed. To illustrate this more clearly, when k is constant across dimensions |Σ|
need be on the order of O(nkd), as opposed to O(nkd). A similar argument can be made for
most of the above structures. The exception to this rule is any stated complexity involving A
(since |A| = k̃), and in the dynamic expression of L(U , Z) via ω. The index set of the segments
(F) is on the order of |F | = O(2k̃), which is a requirement to decouple the explicit storage of
the level sets index by ζ, otherwise the equivalent näıve method discussed in section 4 would

8If the cover is guaranteed to be even simpler, e.g. there exists a rank-y decomposition of the k− 1 interval
parameterizations for each z ∈ Z where y < k − 1, this can obviously be reduced further. We present the
general case here.

EFFICIENT MULTI-SCALE SIMPLICIAL COMPLEX GENERATION FOR MAPPER 17

require O(nk̃), which is obviously intractable even for relatively small values of n and d. This
has implications in tracking which segments are modified between two index parameters p, q.
Specifically, determining which segment index each point is is assigned to between two indices
p and q must be delayed until the path indexing information P has been updated for each
point and in each dimension.

5. Algorithms. We now translate the formulations above into algorithms that construct
mappers for varying r values. The first step is to produce the set of auxiliary data structures
containing the appropriate information.

Algorithm 1 Preprocess data X into a filtered map of covers

Require: Filtered points Z, number of intervals k, cover function f
Require: ω(i) := [2i, 2i+ 1)

1: procedure Enable Multiscale
2: A0 ← φr̄(Z)
3: R̂← f(D, r̄, . . .)
4: (Σ, I)← (R̂I , order(R̂)) O(2nk)
5: S ← {Lω(α)(Ur̄, Z) ∀ α ∈ A } O(n+ 2k)
6: T ← precomputeSegmentTable(S0, k) O(2k2)
7: Puniq ← computeUniquePaths(k) O(2(k − 1))
8: P ← computeIndexPaths(A0, Z) O(3n)
9: end procedure

Denote the map between the ranges of g to the row of T as τ : g → Q, Q = {1, 2, . . . , k}.
These data structures enable the following algorithm:

Algorithm 2 Computes the mapper at a new length/overlap value

Require: Gp(V,E)← N(f∗(Up))
Ensure: Gp(V,E)→ Gq(V,E)

1: function Update Mapper(g) . User-supplied g
2: TODO
3: end function

6. Experimental Results. We demonstrate the performance of the indexing structures and
algorithms by building mappers at multiple scales over three data sets whose sizes vary by
roughly an order of magnitude each. As discussed in Section 1, Mapper is a general framework
in that it can be computed with any continuous filter function. Common choices for the filter
include height functions applied to specific dimensions of the data, eigenfunctions of various
linear operators (e.g. PCA, laplacian eigenmaps, or other rotations in the classical factor
analysis model), eccentricity functions, density or regression estimators, or other Morse-type
functions that provide useful geometric information about the point cloud data. Generally
speaking, as the mapper construction is highly dependent on the filter function used, the choice
of filter depends on the goal of the analysis. Before illustrating the utility of our approach,

18 MATT PIEKENBROCK, DEREK DORAN, AND RYAN KRAMER

we discuss the data sets we performed experiments and some brief background on meaningful
filter functions that were chosen.

Miller-Reaven Diebetes dataset. The Miller-Reaven diabetes data set consists of 145
records of patients who volunteered to participate in a study at the Stanford Clinical Research
Center conducted to further understand the etiology of diabetes. The patients were classified
into one of three classes based on the type of diabetes: overt, chemical, or normal. For each
patient, there were five measurements taken: (1) relative weight, (2) fasting plasma glucose,
(3) area under the plasma glucose curve for the three hour glucose tolerance test (OGTT),
(4) area under the plasma insulin curve for the OGTT, and (5) steady state plasma glucose
response. The goal of the study was to investigate what connections could be discovered
to relate the observed variables to the patients classification. In Millers discussion [22], the
dataset was explored using projection pursuit until a specific 3-dimensional projection was
found that reasonably separated the classes naturally into two “flares” radiating from the
normal population, one for the those in the overt stage of diabetes, and another for those in
the latent (or chemical) stage. A picture of the artistic rendering of the data set, including
the aforementioned flares, is given in Appendix ??.

This particular data set has been previously analyzed with Mapper in [30] and [6] using
density estimation and eccentricity functions. The eccentricity function is defined as:

(5) Ecc(x) =

(∑n
xi∈X d(x, xi)

p

n

) 1
p

for 1 ≤ p ≤ ∞. The eccentricity function can capture simple geometric information about
the data set. One of the often-mentioned benefits of the function is that one need not have
a center (or centers) explicitly available, as the function is defined purely in terms of average
distances (with the norm depending on p). Like many functions chosen as filters, the eccen-
tricity of a data set is coordinate-independent, implying it is invariant under data rotations
or translations.

The kernel density estimate (KDE) of a sample X1, X2, . . . , Xn of size n from a random
variable the density f is defined as:

(6) f̂h(x) =
1

nh

n∑

i=1

K

(
x−Xi

h

)

where the kernel function K satisfies
∫
K(x)dx = 1, and h is often referred to as the bandwidth,

to which the resulting estimate is highly dependent on. Typical choices forK include Gaussian,
Epanechnikov, exponential, cubic, or other kernels. The choice of bandwidth has been studied
for decades, see [29] for a brief overview. As a interesting sidenote, if one chooses a cover
consisting of sublevel sets as mentioned as option (1) in Section 2.2, it can be shown that the
mapper construction encompasses a structure known as the cluster tree C(X, f) of a density
f (where f is not necessarily estimated via KDE), which has also recently seen developments
aided by tools from computational topology (see [16]). The cluster tree C(X, f) is defined
succinctly as:

(7) C(X, f) := {x : f(x) ≥ λ} for some λ > 0

EFFICIENT MULTI-SCALE SIMPLICIAL COMPLEX GENERATION FOR MAPPER 19

where λ is a density threshold level used to partition the data. This speaks to the generality
of Mapper framework.

World Values Survey dataset. The World Values Survey (WVS) is an international re-
search project aimed at documenting and studying the sociological factors that influence
peoples values and beliefs across the world. The study is conducted in longitudinal waves in
around 100 countries which collectively make up approximately 90% of the worlds population.
The study involves a common survey questionnaire conducted anonymously made up of over
250+ survey questions. For more information, the reader is referred to the organizations web-
site.9 We analyzed Wave 6 of the survey (conducted in 2012) for all 2, 232 U.S. respondents
with Mapper. Within the U.S. respondent pool, we choose 28 interesting dimensions to look
at with Mapper, including questions involving happiness and self content, political leanings,
religious and other organization associations, gender, quality of health and healthcare, mar-
ried and family status, wealth and income status, etc. The dimensions were chosen based on
the interpretability of their correlation structure, their cultural significance, and out of the
authors own personal interests.

We consider two eigenfunctions as our filters for the WVS data, each representing a rota-
tion in the exploratory factor analysis (EFA) model. The factor analysis model is a statistical
technique for exploring ways of modeling the variation observed in a given data set by a linear
combination of unobserved or latent variables. Formally, the classical factor analysis forms a
latent variable representation of a set of random variables X = {X1, X2, . . . , Xp} of the form:

(8) X = LS + ε

where the p observed, correlated random variables X are expressed as a linear expansion of q
uncorrelated, unit variance latent variables or “factors” S (where q < p). L is a (p×q) matrix
of coefficients whose columns are referred to as the factor loadings, and ε are the uncorrelated
error terms unique to each Xi ∈ X. In applied factor analysis, the factor loadings are often
used to name and interpret the latent variables. Note that X can be expressed by any
orthogonal p× p rotation matrix R, i.e.

(9) X = LRᵀRS

when RCov(S)Rᵀ = I, and so there are many such decompositions. Because of this, EFA is
sometimes considered a subjective art, resulting in an significant amount of effort put forth in
attempt to find rotations capturing models that are more meaningful or objective, according to
some given criterion. For example, Principle Components Analysis (PCA) may be interpreted
in the latent variable sense as a model that finds the sequence of “best” linear approximations
of X; that is, the PCA solution provides a rank q < p truncated decomposition of 8 that
approximates X in an optimal way. Another popular technique is Independent Components
Analysis (ICA), which seeks to reconstruct the loadings L such that

(10) I(AᵀX)

9See http://www.worldvaluessurvey.org.

http://www.worldvaluessurvey.org

20 MATT PIEKENBROCK, DEREK DORAN, AND RYAN KRAMER

is minimized, where I is the mutual information between the components of the latent vari-
ables,

(11) I(S) =

p∑

j=1

H(Sj)−H(X)

In summary, for our purposes, these filter functions may be interpreted simply as rotations in
the EFA model. PCA and ICA methodically find components that (1) maximize the largest
sample variance among all linear combinations of the columns of X, called the principle com-
ponents, or (2) minimize the mutual information between the estimated components such that
the the components are [ideally] statistically independent, called the independent components.
The reader is referred to Section 14.7 of [31] for more details on exploratory factor analysis.
The WVS data has been analyzed several times with factor analysis methods, see e.g. [23]
and references therein for an exemplary overview.

Torus dataset. One of the use cases for Mapper is its ability to represent a simplified
representation of the data by encoding the structure of the filter f through the lens of Z. By
interpreting the data X as samples from a low-dimensional manifold, observed in some high
dimensional topological space, Mapper provides a natural tool for exploratory data analysis.
For example, in the previous section, f was always expressed as a linear manifold capable
of approximating the data “well”, where the quality of the decomposition was measured by
the interpretability and amount of variation explained by the underlying latent variables. In
the context of data analysis, the natural workflow is to treat the observed higher dimensional
data set as fixed, and then infer the low-dimensional representation. Here, in an experiment
similar in spirit as was conducted in the original Mapper paper (see section 5.2 in [30]), we
construct a synthetic experiment to show the converse situation where we know the shape of
the low dimensional manifold (and the manifold is non-linear), and we seek to embed it in a
higher dimensional space. We then test our ability to recover the shape of the low-dimensional
manifold with Mapper.

Consider the task of of recovering the shape of a compact 2-dimensional manifold in R3.
As a simple example, we generated a synthetic data set creating by drawing samples from a
probability distribution on a simple 2-dimensional torus, defined as:

(12) M = {[(R+ r cos(θ)) cos(ψ), (R+ r cos(θ)) sin(ψ), r sin(θ)]}

where 0 ≤ θ, ψ ∈ [0, 2π] and 0 < r < R. If our goal is inference, for theoretical reasons its
advantageous to assume the data are uniformly distributed on M, see e.g. [2]. It’s tempting
to use equation 12 to obtain points on M directly by sampling uniformly from θ and ψ,
however this will not result in a uniform sampling on the manifold itself. Intuitively, such
a sampling scheme would result in a higher density of points on the areas of the torus with
relatively high curvature, while points sampled on the “outside” of the torus will haver a lower
density. To adjust for this, Diaconis et. al [10] use tools from geometric measure theory to
derive a general technique that reparameterizes [the density of] a given sampling scheme via
a change-of-variables transformation in such a way that properly adjusts for the surface area
overM. The result is a simple rejection-sampling scheme which can be used to sample points

EFFICIENT MULTI-SCALE SIMPLICIAL COMPLEX GENERATION FOR MAPPER 21

uniformly on M. We use this approach to synthetically generate 10, 000 points uniformly
distributed along the surface of a 2D torus (represented in R3). The torus had an inner radius
of 6 (distance from the outside of tube to the center) and an inner tube radius of 3.

To embed the point cloud in a higher dimensional space, one may use the QR decomposi-
tion to represent an orthogonal basis for the column space of the point cloud. Keeping with
notation, denote the uniformly distributed points along M as Z ⊂ R3. We embedded Z in
X ⊂ R30 by padding dimensions 4 − 30 of Z with 0s, creating a new data set X̂, and then
applying a rotation via:

(13) X = X̂QR

where QR represents the QR decomposition of a (30×30) matrix of normally distributed ran-
dom deviates. Given X, we may now properly utilize a number of projection techniques which
depend a uniform distribution over M to test Mappers ability to recover the torus. The two
high-efficiency algorithms we choose to use explicitly make this assumption onM: Laplacian
Eigenmaps [2] and the Uniform Manifold Approximation and Projection (UMAP) [20].

The Laplacian Eigenmap (LE) algorithm builds an approximation to the eigenmaps of
the Laplace-Beltrami operator on manifolds using a (potentially weighted) Laplacian of a
graph G with weights Wij given by a kernel (e.g. a gaussian kernel exp(−‖xi − xj‖/ε)). G
is typically constructed by considering adjacencies formed by (1) the intersection graph of ε-
neighborhood of X, or (2) the k-nearest neighbor graph of X, with the former depending more
on the geometry of X and sometimes difficult to parameterize, and the latter less dependent
on the geometry but easier to specify. LE then finds an embedding Z by minimizing the
objective:

(14) arg min
ZᵀDZ=I

tr(ZᵀLZ)

In essence, this minimizes
∑

i,j(zi− zj)2Wij . The motivation is that if any two data points xi
and xj are close in the ambient space, then the lower-dimensional points they map to should
also be close.

The Uniform Manifold Approximation and Projection (UMAP) algorithm [20] is a high-
efficiency manifold learning technique that also makes use of the uniformity assumption of the
points on M. Briefly, the central premise of the UMAP strategy for projection is that local
neighborhood manifold approximations may be ‘patched’ together to create a topological
representation of the ambient space. This topological representation may then be used to
create a [topologically] equivalent lower dimensional projection under the enforced assumption
that the data are uniformly distributed on the manifold.10 UMAP then optimizes the layout
of the resulting embedding by cross-entropy functional between each spaces fuzzy simplicial
set representation. For more details, the reader is referred to the paper [20].

6.1. Experiments. Using the data sets and filters above, we ran various experiments using
the indexing structure and algorithms described above to assess the computational savings

10Technically, UMAP does not assume a Riemannian metric is inherited from the ambient space, but rather
seeks to find a metric that is uniformly distributed on the manifold by creating a discrete metric space for each
point xi ∈ X. See [20] for more details.

22 MATT PIEKENBROCK, DEREK DORAN, AND RYAN KRAMER

we achieve in computing multiple mappers. A table of various statistics related to the data
sets and their corresponding Mapper parameter settings is given in Table 2. We implemented
our indexing structure mentioned above in Rcpp [11], incorporated into an R package.11. To
maintain an updated version of the simplicial complex, we store the adjacency relations in a
Simplex Tree [4].

Table 2: Details on the filter functions and covering methods used
Data set [n/D/d] Filter Num. Intervals % non-empty

MR 145/6/1 Density estimate 4 100%
MR 145/6/1 Eccentricity 4 100%

WVS 2232/28/3 Principle Components 53 70.4%
WVS 2232/28/3 Independent Components 53 78.4%
Torus ≈10k/30/2 Laplacian Eigenmaps 202 98.6%
Torus ≈10k/30/2 UMAP 152 86.2 %

To test our indexed approach, we consider the scenario where one wishes to compute distinct
mappers successively between overlap percentages. In practice, one is rarely concerned with
mappers computed with g > 1/2, and in the interest of reporting fair and practical results we
also constrain ourselves to this scenario.12 In what follows, we test the efficiency of computing
mappers for n equally spaced values of g = 0 and g = 1/2 (for varying n), as well the efficiency
of computing the exact mapper sequences, i.e. all distinct mappers in range g ∈ [0, 1/2].
When d = 1, the “exact” approach corresponds to all distinct mappers in Σ. When d > 1,
the number of distinct mappers is combinatorial in g, and of course g is not well-ordered. To
have a similar comparison as the 1-dimensional case, we construct a well-ordered sequence of
parameters G = [gi, gi+1, . . . , gk] (obtained from Σ) such that

(15) ‖gj‖1 ≤ ‖gj+1‖1 ∀ j ∈ [i, k]

Equation 15 creates a well-ordered set of parameters G by ensuring each successive component
between gj and gj+1 is nondecreasing. As such, the “exact” sequence is always of size O(md),
where m = |Σ|.

Table 2 shows the parameters corresponding to the performed experiments. We include
the size and dimensions of the data sets and filter values, respectively, as well as the total
number of intervals for each method. For each filter, we set the number of interval to distribute
as constant along every dimension. For example, we set k = 5 for both covers of the filtered
WVS data, which results in a cover with 125 intervals total since the data is 3-dimensional.
In fairness, we report the percentage of intervals which are non-empty when g = 0. It’s
well known that as the embedding dimension of a fixed data set increases, most of the space
becomes “empty” in the sense that the data become increasingly sparse. One may easily devise
pathological examples where one has a given even a single outlier that is so far from mass
of the data that the majority of the data appears to be within a single interval, increasing
the likelihood that lower values of g do not produce distinct mappers. In the interest of

11See: https://github.com/peekxc/Mapper
12The reader is welcome to test values for g > 1/2 using the provided source code. The code to generate the

plots is also publicly available, and fully reproducible.

https://github.com/peekxc/Mapper

EFFICIENT MULTI-SCALE SIMPLICIAL COMPLEX GENERATION FOR MAPPER 23

0

1

2

3

4

5

6

0 10 20 30 40 50

Percent Overlap

C
um

. #
 o

pe
ra

tio
ns

 (
lo

g−
sc

al
e)

Approximation: 10 50 exact

Method: Naïve Indexed

KDE filter (1D)

Miller−Reaves Chemical Diabetes data set

0

2

4

6

8

10

12

14

0 10 20 30 40 50

Percent Overlap

C
um

. #
 o

pe
ra

tio
ns

 (
lo

g−
sc

al
e)

Approximation: 10 100 exact

Method: Naïve Indexed

Principle Components filter (3D)

World Values Survey data set

0

3

5

7

9

11

13

0 10 20 30 40 50

Percent Overlap

C
um

. #
 o

pe
ra

tio
ns

 (
lo

g−
sc

al
e)

Approximation: 10 100 exact

Method: Naïve Indexed

Laplacian Eigenmap filter (2D)

Embedded Torus Synthetic data set

0

1

2

3

44

5

0 10 20 30 40 50

Percent Overlap

C
um

. #
 o

pe
ra

tio
ns

 (
lo

g−
sc

al
e)

Approximation: 10 50 exact

Method: Naïve Indexed

Eccentricity filter (1D)

Miller−Reaves Chemical Diabetes data set

0

2

4

6

8

10

12

14

0 10 20 30 40 50

Percent Overlap

C
um

. #
 o

pe
ra

tio
ns

 (
lo

g−
sc

al
e)

Approximation: 10 100 exact

Method: Naïve Indexed

Independent Components filter (3D)

World Values Survey data set

0

3

5

7

9

11

14

16

0 10 20 30 40 50

Percent Overlap

C
um

. #
 o

pe
ra

tio
ns

 (
lo

g−
sc

al
e)

Approximation: 10 100 exact

Method: Naïve Indexed

UMAP filter (2D)

Embedded Torus Synthetic data set

Figure 3: Cumulative number of number of 0-simplices that are recomputed when the clus-
tering function is trivial, as a function of the percent overlap in the cover. The vertical axis
is in log-scale. The colors denote the strategy used, and the line type denotes the number of
successive mappers computed in sequence.

transparency, additional data-centric analysis has been performed and is available in the
supplementary material.

The results of computing the discrete and exact mappers are given in Figures 3 and 3 for
the data sets and their corresponding filters. In both figures, from left to right, the columns
show the results for the two filter functions applied to the (1) Miller-Reaven Diabetes data
set, (2) World Values Survey data set, and (3) the Synthetic Torus data set. In each plot, the
horizontal axis depicts the overlap percentage13, and the vertical axis tracks the cumulative
number ‘operations’ needed provide to create the successive mappers in a log-scale. For
Figure 3, the ‘operations’ are the cumulative number of indices α ∈ A which need to be
recomputed (via partial clustering) to recover the mapper. In practice, the corresponding
vertices also need to be replaced in the resulting simplicial complex, however the number of
such vertices depends on the clustering algorithm (which we are agnostic to). As a result, we
find it more informative to report the number of indices directly. Conceptually, this count is
equal to the number of vertices that need to be recomputed when the clustering function is
trivial in the sense that it always returns as a result a single connected component for each
index α ∈ A. We follow a similar scheme for Figure 4 by reporting the cumulative number
of indexed pairs on the vertical axis (log-scale) that need to be recomputed. Conceptually,
this count is equal to the number of edges that need to be recomputed when the clustering
algorithm is trivial. Note that although the empirical counts seem similar and are indeed
related, computationally recomputing a ‘vertex’ and an ‘edge’ are fundamentally two very

13Or, in the case where d > 1, the average of the the parameter vector g.

24 MATT PIEKENBROCK, DEREK DORAN, AND RYAN KRAMER

0

1

2

3

4

5

6

7

0 10 20 30 40 50

Percent Overlap

C
um

. #
 o

pe
ra

tio
ns

 (
lo

g−
sc

al
e)

Approximation: 10 50 exact

Method: Naïve Bounded Indexed

KDE filter (1D)

Miller−Reaves Chemical Diabetes data set

0

3

6

8

11

13

16

18

0 10 20 30 40 50

Percent Overlap

C
um

. #
 o

pe
ra

tio
ns

 (
lo

g−
sc

al
e)

Approximation: 10 100 exact

Method: Naïve Bounded Indexed

Principle Components filter (3D)

World Values Survey data set

0

3

6

9

12

15

17

20

0 10 20 30 40 50

Percent Overlap

C
um

. #
 o

pe
ra

tio
ns

 (
lo

g−
sc

al
e)

Approximation: 10 100 exact

Method: Naïve Bounded Indexed

Laplacian Eigenmap filter (2D)

Embedded Torus Synthetic data set

0

1

2

3

4

5

66

0 10 20 30 40 50

Percent Overlap

C
um

. #
 o

pe
ra

tio
ns

 (
lo

g−
sc

al
e)

Approximation: 10 50 exact

Method: Naïve Bounded Indexed

Eccentricity filter (1D)

Miller−Reaves Chemical Diabetes data set

0

3

6

8

11

13

16

18

0 10 20 30 40 50

Percent Overlap

C
um

. #
 o

pe
ra

tio
ns

 (
lo

g−
sc

al
e)

Approximation: 10 100 exact

Method: Naïve Bounded Indexed

Independent Components filter (3D)

World Values Survey data set

0

3

6

9

12

15

18

21

0 10 20 30 40 50

Percent Overlap

C
um

. #
 o

pe
ra

tio
ns

 (
lo

g−
sc

al
e)

Approximation: 10 100 exact

Method: Naïve Bounded Indexed

UMAP filter (2D)

Embedded Torus Synthetic data set

Figure 4: Cumulative number of number of 1-simplices that are recomputed when the clus-
tering function is trivial, as a function of the percent overlap in the cover. The vertical axis
is in log-scale. The colors denote the strategy used, and the line type denotes the number of
successive mappers computed in sequence.

different operations: the former involves running a clustering algorithm on points in the data
space (which often involves expensive distance calculations), and the latter involves checking
for non-empty intersection between the vertices produced by the clustering (which scales
exponentially with the intrinsic dimensionality of the space).

The varying types of lines in both figures depict the type sequence of mappers that was
computed, where the ‘type’ is either a sequence of n successive mappers computed for equally
spaced g values, and the ‘exact’ strategy is as previously discussed. The color of the lines
depict the strategy that was used to compute the sequence of mappers. For Figure 3, there
just two strategies: the traditional strategy we deem näıve, and our ‘indexed’ strategy. The
näıve strategy involves recomputing the vertices at every interval in the cover to compute
each successive mapper (for each overlap value g). This is conceptually equivalent to running
Mapper independently at each value of a predetermined sequence of values G. The indexed
strategy uses the algorithms discussed in Section 5 to minimize the number of indices to reap-
ply the partial clustering too. For Figure 4, there are three strategies: again the traditional
or näıve strategy, the ‘bounded’ approach, and our indexed approach. The näıve approach
involves checking for a non-empty intersection between all

(
k
2

)
pairwise combinations of ver-

tices, an approach that albeit is näıve in this context, is easy to implement and guaranteed to
work for any type of cover. The ‘bounded’ approach denotes the approach that only checks
for non-empty intersections between vertices that immediately adjacent. Intuitively, when
0 < g < 1/2, each interval only intersects its immediate neighbors, and thus the pairs of these
neighboring intervals are the only pairs that need to be considered. Only unique combina-
tions of pairs are counted in Figure 4—there was no double-counting. The indexed approach

EFFICIENT MULTI-SCALE SIMPLICIAL COMPLEX GENERATION FOR MAPPER 25

corresponds to our approach.
We can see from the results in Figures 3 and 4 that our approach compares favorably

with the other approaches tested for data sets of varying size and dimension. As expected,
the indexed approach requires less operations that the standard approaches mentioned, for
both discrete sequences of size n and exact sequences. Some interesting artifacts to point
out include the exact sequence requiring less pairwise index comparisons than the n = 50
sequence for the MR data set with the eccentricity filter for the näıve and bounded sequences,
but requiring more (as expected) for the indexed approach. Since d = 1, the exact sequence
would at most consists of 145 mappers. However, the eccentricity filter placed much of the data
on the lower and upper halfspaces of the lowest and highest intervals, respectively. Because
they lie on the boundary halfspaces of the cover, these points are exceptional cases in that
they will not intersect any other intervals for 0 < g < 1/2. As a result, the number of mappers
for particularly low values of g (e.g. g < 1/4) is remarkably small, and since k = 4, only
a few pairwise checks are needed to produce valid mappers relative to the

(
4
2

)
checks that

are needed for each g in the näıve approach. This artifact highlights an important aspect of
our indexed approach though—the indexed approach will never require operations the other
more standard approaches mentioned. At worst, the number of pairs of indices compares will
match the bounded approach. This also becomes noticeable when the intervals are densely
and uniformly packed, when the data set is large, when only a few mappers are requested.
This is illustrated by considering the dashed n = 10 sequence computed over the Torus
data set (for either 3 or 4). Since n is relatively large, the data are uniformly distributed,
and the number of intervals is relatively small, computing a small number of mappers in a
sequence (e.g. g ∈ {5%, 10%, . . . } is comparable to simply running Mapper independently at
each overlap value. However, the indexed approach still requires significantly less operations
when computing the exact sequences. We mention in passing that increasing k and adding
dimensions to the filter space will only exacerbate the performance for the näıve and bounded
approaches, since the number of operations they both require is solely dependent on aspects
of the cover itself, whereas the indexed approach depends more on aspects of the data.

7. Related Work.

Inverse Range Searching. The algorithmic problem of computing the level sets reminis-
cent of a class of geometric range searching problems well-known to computational geometry.
If one has experience with these structures, one may wonder why they are not used instead, or
why they are not discussed in detail here. We demonstrate that these class of range searching
data structures, although inspirational in design, are fundamentally different than the one
proposed here. Consider the generic geometric range problem, given as follows:

Design an efficient algorithm which, for a given range R ∈ R, determines the set X∩R.

where X is some set of points of interest, and R is a set of range queries. The point set of
interest in our case are the filtered points, Z. Since we consider the point set Z as fixed, we
may create a suitable data structure that stores auxiliary information about the space. The
structure may then be repeatedly given ranges of the form:

(16) [a1
l , b

1
r]× [a2

l , b
2
r]× · · · × [adl , b

d
r]

26 MATT PIEKENBROCK, DEREK DORAN, AND RYAN KRAMER

where each range [xil, x
i
r], x

i
l, x

i
r ∈ R, xil ≤ xir for all i = 1, 2, . . . , d denotes an (generalized)

interval. Collections of these intervals are often referred to as range queries, or simply queries.
The goal is to solve the geometric range problem listed above as efficiently as possible for a
given set of queries. For our application, this translates directly to the task of populating the
level sets L(U , Z).

When d = 1 the problem is easily solved in logarithmic time via a binary search on a
sorted array. For d > 1, binary search trees augmented with some auxiliary information are
often used. While tree-like data structures specialized for range searching (e.g. a kD trees,
range trees, morton codes, etc.) are by now well-studied and highly accessible, and although
dynamitization schemes do exist for these structures, they are primarily static structures
designed to give efficient results at a specific localization of searching. An example of this
would a preprocessed Z-order curve, or morton code. At the desired level of locality, such
structures have proven quite efficient, however their efficiency degrades the more the locality
of the queries differ from the locality of the space-filling design, an effect that only exaggerated
as d grows.

A more appropriate data structure would be one that solves what some have called the
inverse range search problem [27]: given a set R of (possibly) intersecting d-dimensional rect-
angles and a point zi ∈ Z, determine all elements of R that intersect (or enclose) the point.
Examples of data structures designed for this problem include the segment tree, the interval
tree, etc. (see [18] for an overview). The generic inverse range problem is designed to address
the task where the point queries may be unknown, however in our case, we have additional
information: the “queries” are always correspond to the upper and lower bounds of the inter-
vals composing the cover, and since we consider Z as fixed, such queries may be computed
algebraically. Although conceptually the problem of computing the covers for varying r is
similar to the dynamitized inverse range search approach, our approach is fundamentally a
deterministic structure.

Mapper Parameter Selection. There have been recent efforts to alleviate the difficulty
of properly parameterizing Mapper. Carriére et al. [6] investigated how to parameterize the
Mapper by testing Mappers ability to recover the Reeb graph from a set of points sampled
from a generative, stochastic process. Specifically, Carriére explored the problem of using
Mapper to infer the Reeb graph, viewed from the statistical setting where the observations
are assumed to be sampled from a generative process, i.e. the points X = x1, x2, . . . xn are
assumed to be i.i.d sampled from probability distribution on RD, where X ⊂ RD, and the
distribution satisfies

P(B(x, t)) ≥ min(1, atb)

for some constants a > 0, b ≥ D, where B(x, t) is the euclidean ball centered at x with radius
t. The cover they consider is what we refer to in the appendix as the “fixed” rectangular cover,
and they specifically consider the connected components of the Rips complex for parameter
δ when considering the connected components induced by the preimage of f . Under the per-
spective that the data come from a generative process, and with a few additional assumptions
on the smoothness of the density, Carriére et al. studied how well Mapper captures the Reeb
graph under different situations (exact Morse-type filter is specified a priori with known gen-
erative model, exact filter is specified with an unknown generative model, and an inferred filter

EFFICIENT MULTI-SCALE SIMPLICIAL COMPLEX GENERATION FOR MAPPER 27

is used with an unknown generative model). He then proceeds to analyze Mappers ability to
recover the Reeb graph for g ∈ (1

3 ,
1
2) for varying resolutions (r), and they derive confidence

sets for extended persistence diagrams generated from the Mappers using bootstrap. Their
results suggest that Mapper is a minimax optimal estimator of the Reeb graph, under certain
conditions on the regularity of the filter and the parameters of the generative model.

We see this probabilistic approach to computing a stable set of parameters for Mapper as
an vital contribution toward simplifying the usability of the Mapper method, complementary
to our own. Like their effort, we acknowledge the instability of the mapper construction with
respect to its parameters. Whereas Carriére et al. avoid the intractability of computing
multiple mappers by developing an algorithm that makes various assumptions on the filter
function and the distribution of the data for selecting a viable set of (ideally) stable parameters,
we make specific assumptions about the form of the cover to enable a much more tractable
means of computing the mappers directly, independent of the filter used.

Multiscale Mapper. The primary contribution of this effort is an efficient way of comput-
ing distinct mappers for varying values of overlap. One of the applications of this is a means
of computing discrete approximations to the so-called Multiscale Mapper studied recently by
Dey et al. [8]. Before discussing this, we recall a number of definitions from their work.

Suppose we are given a map of covers, as defined previously in Section 2.3. Note that, just
as we have a pullback cover of X induced by U via f with Mapper at a single resolution, given a
map of covers ξ, there is a corresponding map of pullback covers of X, f∗(ξ) : f∗(U)→ f∗(V).
Given such a map, there is an induced simplicial map N(ξ) : N(U) → N(V), given on the
vertices by the map ξ. It can be shown that induced maps are contiguous, and that they
induce identical maps at the homology level, however we will not discuss this in detail, see
Dey et. al [8] for more details.

Using these two notions, Dey et. al introduce the notion of a tower as a collection of
objects connected by such maps, defined as follows:

Definition 7.1 (Tower). A tower W with resolution r ∈ R is any collection W =
{
Wε

}
ε≥r

of objects Wε together with maps wε,ε′ : Wε → Wε′ so that wε,ε = id and wε′,ε′′ ◦ wε,ε′ = wε,ε′′

for all r ≤ ε ≤ ε′ ≤ ε′′. Given such a tower W, res(W) refers to its resolution.
When W is a collection of finite covers equipped with maps of covers between them, we

call it a tower of covers. When W is a collection of finite simplicial complexes equipped with
simplicial maps between them, we call it a tower of simplicial complexes.

In the above definition, ◦ is used to denote a composition of maps. The interpretation of ε as
a “courseness” parameter becomes clear from this definition. Letting X and Z be topological
spaces and f : X → Z be a continuous map, given a tower of covers U, the multiscale mapper
is defined to be the tower of simplicial complexes defined by the nerve of the pullback:

MM(U, f) := N(f∗(U))

Representing a sequence of simplicial complexes connected by simplicial maps. Passing these
complexes to the homology functor Hk(·), k = 0, 1, 2, . . . with coefficients in the field leads to
persistence modules, which may be summarized through the variety of tools being developed to
summarize such maps, i.e. their associated persistence diagrams. Notably, one of the results

28 MATT PIEKENBROCK, DEREK DORAN, AND RYAN KRAMER

from [8] include, under mild assumptions on the map f , the ability to compute the exact
persistence diagram from only the 1-skeleton of the complexes.

8. Conclusion and Future Work. In this paper, we’ve derived solutions to computing
the discrete set of overlap parameters values which yield distinct Mapper constructions, and
we introduced an algorithmic solution that uses these values to enables efficient computation
successive mappers. We demonstrated the efficiency of the structure empirically, and we
also introduced a way of representing mappers in a much more memory efficient way, for a
fixed data set. We showed experiments with real-world data sets that illustrate the benefits
of our approach in the exploratory/confirmatory analysis setting, and we also highlighted
relationships between our work with recent theoretical work involving Mapper related to
persistence and stability. We included a small discussion of how the solution provided enables
further development in the application of topological data analysis to various theoretical and
application areas. Finally, in the spirit of transparency and reproducibility, we publicly made
available the scripts14 and source code of our experiments in the form of a R package.15

There is much in the way of future work to explore, primarily with regard to the strength of
our assumptions, and in exploring its theoretical connections to persistence more extensively.
Perhaps the most critical assumption of our approach is that we always assume the number of
intervals, k, is fixed prior to making the structure. A useful extension to this work would be a
mean of adapting the structure to adjust for varying k without significantly compromising the
storage or runtime complexities. Intuitively, all one needs a compressed way of representing,
for varying k, the minimal settings wherein any arbitrary point intersects a new set in the
cover. One idea that Carlsson pointed out in his seminal paper [5] (see page 35), one may use
a map of integers k → bk2c to define a map of coverings U → V wherein every interval in V
contains two intervals from U . This strategy could also be amended to wok with our structure
for k varying by powers of two.

Another effort to look into is whether there exists a way to use the fact that we assume
the cover is composed of axis-parallel sets to reduce the storage complexity even further. We
make no conjecture that either the storage or computational complexities of our approach are
optimal; we set out to create a solution specific to Mapper that was relatively efficient, generic
enough to work with the most often used covering strategies in practice, and simple enough
to easily extend to the multidimensional case. Although we emphasize the particular problem
we address here is fundamentally different from the generic class of geometric range searching
problems in the sense that the ’queries’ are deterministic, calculated a priori, and form an
inherent part of the structure, its possible that more efficient, dimension-specific adaptations
of our approach may be derived from e.g. [19] to provide lower complexity bounds.

Appendix.

A. Proofs. In what follows we prove the canonical representation of the cover is equivalent
for all covers U∗r with interval lengths r ≤ r∗ ≤ r′, where r > r̄ and r′ is the maximum interval
length such that g < 1

2 . Before discussing the proof, recall that a partial order is an interval

14See https://github.com/peekxc/IndexedMapper
15The package is CRAN-pending, but available for installation via github: https://github.com/peekxc/

Mapper

https://github.com/peekxc/IndexedMapper
https://github.com/peekxc/Mapper
https://github.com/peekxc/Mapper

EFFICIENT MULTI-SCALE SIMPLICIAL COMPLEX GENERATION FOR MAPPER 29

order if its elements can be assigned intervals on the real line so that x < y if and only if
the interval assigned to x is completely to the left of the interval assigned to y, and a partial
order is a semiorder if its elements can be assigned numbers so that x < y if and only if y’s
assignment exceeds x’s assignment by no more than 1. Our proof summarizes an equivalent
result involving the representation of intervals as interval graphs [3].

Proof. Assume 0 < g < 1
2 . Construct an interval graph Gε′(V,E) of U ′ε that assigns to each

vertex vα ∈ V the range of Uα for all α ∈ A,A ⊂ Z+. Since r < 1
2 , `(Uα) + `(Uα ∩ Uα+1) <

1
2`(Uα) for all α ∈ A, and there is no pair vx, vy ∈ V such that (1) Uy ⊂ Ux and (2) Ux
intersects intervals to the left and right Uy that do not intersect Uy. Therefore no interval
is properly contained in another, the intervals indexed by A follow a semiorder. If A is
semiordered, there is no induced subgraph isomorphic to the bipartite ‘claw graph’ K1,3.

This yields a proper interval representation ofG, wherein the right endpoints have the same
order as the left endpoints. As a result, the intervals in U may be reduced to unit length.
Processing from left to right, at each step let Ux = [a, b] be the unadjusted interval that has
the leftmost left endpoint, and let α = a unless Ux contains the right endpoint of some other
interval, in which case let α be the largest such right endpoint. Such an endpoint would belong
to an interval that has already been adjusted to have length 1; thus α < min{a+ 1, b}. Now,
adjust the portion of the interval in [α,∞) by shrinking or expanding [α, b] to [α, a + 1] and
translating [b,∞) to [a+ 1,∞). The order of endpoints does not change, intervals processed
before Ux must have length 1, and Ux now also has length 1. Iterating this operation produces
the unit interval representation. We conclude that since every proper interval graph is a unit
interval graph, the canonical representation of the intervals 0 < g < 1

2 are equivalent.

We extend this result to covers with g ∈ [0, 1) (or r̄ ≤ r <∞) using our reflective symmetry
assumption to track the order of interval endpoints for varying ranges of g. We recompute their
corresponding canonical representations, and record them in a table, e.g. 1. See section 4.2
for more details.

B. Derivations. The hyper-rectangular covering method denoted by equation ?? requires
as input the number of rectangles k to distribute along each dimension, and an overlap per-
centage g neighboring rectangles should intersect (where g ∈ [0, 1)). where each generalized
interval has side lengths given by r, and the degree to which overlap is proportional to g. The
precise way one indexes these parameters into a cover can vary. Below, we outline two ways
often used in practice.

B.1. Restrained cover. One family hyper-rectangular covers requires as input the number
of rectangles k to distribute along each dimension, and an overlap percentage g neighboring
rectangles should intersect (where g ∈ [0, 1)). The cover method uses the range of Z to
reparameterizing (k, g) into parameter (r, e), where r is the length of each interval and e is
the step size between intervals, which is inversely proportional to g. We refer to this family
as the restrained cover because the intervals at the ends of the cover are always restrained by
the range of Z. As a result, although when g = 0 the intervals are equally spaced and equal
length, as g → 1 the centers of each intervals moves towards the center of the range of Z. In
what follows, we derive how to reconstruct the discrete set of interval values r which produce
distinct covers. Without loss in generality, we should the case where d = 1 to simplify the

30 MATT PIEKENBROCK, DEREK DORAN, AND RYAN KRAMER

notation.
One proceeds constructing the cover by first finding the range of the function f restricted

to the set of given points Z. The range vector is the component-wise difference between them:

z̄ = zmax − zmin

Given a user-supplied input for g and k, a cover U is constructed by computing the interval
length and step size parameters, respectively:

r = z̄−1(k − g(k − 1))

e = r(1− g)
(17)

Notice that if k is fixed and g = 0, r is completely determined by the range the data, yielding
the base interval length:

(18) r̄ = k−1z̄

We refer to this length as the base interval length, and denote it with r̄. It’s clear that when
g > 0, r > r̄, otherwise the intervals would not contiguously cover the range of Z. Now since

r = r̄ + ε

where ε ∈ R, our simple observation is that we may compute all possible distinct values of r
by computing the distance D from each point to their corresponding k− 1 intervals, and then
adding this distance to the base interval length:

(19) R̂ = r̄ + 2D

Setting Σ = R̂ gives all the parameterizations that produce distinct covers for this family of
covers for a fixed k and Z, and a result, distinct mapper constructions.

One exploratory use case of this is as follows. Suppose a user, for example, wishes to
compute the mappers for an ordered set g = {g1, g2, . . . , gm}. Since e is dependent on g, it’s
clear that the only non-fixed variable g depends on is r, i.e. g is computable if r is known,
shown below:

r(k − g(k − 1)) = z̄

rk − rgk + rg = z̄

g(−rk + r) = z̄ − rk

g =
z̄ − rk

r(−k + 1)

(20)

We may convert the values of g to their corresponding intervals lengths r using 17, and then
use the index map ζ(r) to compute the mappers incrementally using the indexed structure.

EFFICIENT MULTI-SCALE SIMPLICIAL COMPLEX GENERATION FOR MAPPER 31

B.2. Fixed-centroid cover. Another family of hyper-rectangular covers that also parame-
terized by (k, g) is the fixed-center (or centroid) family of intervals. This method follows more
closely with the second cover defined in Section 2.2, where U is decomposed into a collection
of intervals with centers α, each of length 2ε. We refer to this family as the fixed-centroid
cover because the centers of the intervals are fixed using the range of Z, and the only free
parameter is ε. As before, we derive how to reconstruct the set which produces distinct covers
in the d = 1 case.

Given parameters (k, g) and a set of points Z, calculate the base interval length as before:

r̄ = k−1z̄

In general, the centers of the intervals may be placed arbitrarily. We consider an equidistant
placement of the centers α

α = ai +
|bi − ai|

2
∀ i ∈ 1, 2, . . . , k

where k is fixed, and [ai, bi] are given by the endpoints of the intervals constructed from the
intervals in Ur̄. Once these centers are determined, ε is computed using g as follows:

ε = 2−1

(
r̄ +

r̄g

1− g

)

To construct the cover, one iterates through through the k centers α ∈ A and constructs the
resulting intervals as

Uα = (α− ε, α+ ε) ∀ α ∈ A

All possible distinct values of r are computed by adding this distance D from each point
to their corresponding k − 1 intervals to the base interval length:

(21) R̂ = r̄ + 2D

Setting Σ = R̄ gives all the parameterizations that produce distinct covers for this family
of covers for a fixed k and Z, and a result, distinct mapper constructions. As before, the
exploratory case is handled via a conversion from these lengths to the overlap parameters:

g = 1− r̄

R̂

Acknowledgement. This work was supported by an appointment to the Internship/Re-
search Participation Program at the U.S. Air Force Research Laboratory (AFRL), adminis-
tered by the Oak Ridge Institute for Science and Education through an interagency agreement
between the U.S. Department of Energy and Wright-Patterson Air Force Base.

32 MATT PIEKENBROCK, DEREK DORAN, AND RYAN KRAMER

REFERENCES

[1]
[2] M. Belkin and P. Niyogi, Laplacian eigenmaps for dimensionality reduction and data representation,

Neural computation, 15 (2003), pp. 1373–1396.
[3] K. P. Bogart and D. B. West, A short proof that ”proper= unit”, Discrete Mathematics, 201 (1999),

pp. 21–23.
[4] J.-D. Boissonnat and C. Maria, The simplex tree: An efficient data structure for general simplicial

complexes, Algorithmica, 70 (2014), pp. 406–427.
[5] G. Carlsson, Topology and data, Bulletin of the American Mathematical Society, 46 (2009), pp. 255–308.
[6] M. Carriere, B. Michel, and S. Oudot, Statistical analysis and parameter selection for mapper, The

Journal of Machine Learning Research, 19 (2018), pp. 478–516.
[7] V. De Silva and R. Ghrist, Homological sensor networks, Notices of the American mathematical

society, 54 (2007).
[8] T. K. Dey, F. Mémoli, and Y. Wang, Multiscale mapper: Topological summarization via codomain

covers, in Proceedings of the twenty-seventh annual acm-siam symposium on discrete algorithms,
SIAM, 2016, pp. 997–1013.

[9] T. K. Dey, F. Mémoli, and Y. Wang, Topological analysis of nerves, reeb spaces, mappers, and
multiscale mappers, arXiv preprint arXiv:1703.07387, (2017).

[10] P. Diaconis, S. Holmes, M. Shahshahani, et al., Sampling from a manifold, in Advances in Modern
Statistical Theory and Applications: A Festschrift in honor of Morris L. Eaton, Institute of Mathe-
matical Statistics, 2013, pp. 102–125.

[11] D. Eddelbuettel and R. François, Rcpp: Seamless R and C++ integration, Journal of Statistical
Software, 40 (2011), pp. 1–18, https://doi.org/10.18637/jss.v040.i08, http://www.jstatsoft.org/v40/
i08/.

[12] K. J. Emmett and R. Rabadan, Characterizing scales of genetic recombination and antibiotic resistance
in pathogenic bacteria using topological data analysis, in International Conference on Brain Informatics
and Health, Springer, 2014, pp. 540–551.

[13] R. Ghrist, Barcodes: the persistent topology of data, Bulletin of the American Mathematical Society, 45
(2008), pp. 61–75.

[14] R. W. Ghrist, Elementary applied topology, Createspace, 2014.
[15] C. Heine, H. Leitte, M. Hlawitschka, F. Iuricich, L. De Floriani, G. Scheuermann, H. Hagen,

and C. Garth, A survey of topology-based methods in visualization, in Computer Graphics Forum,
vol. 35, Wiley Online Library, 2016, pp. 643–667.

[16] K. Jisu, Y.-C. Chen, S. Balakrishnan, A. Rinaldo, and L. Wasserman, Statistical inference for
cluster trees, in Advances in Neural Information Processing Systems, 2016, pp. 1839–1847.

[17] M. Kramar, A. Goullet, L. Kondic, and K. Mischaikow, Persistence of force networks in com-
pressed granular media, Physical Review E, 87 (2013), p. 042207.

[18] D. Lee, Interval, segment, range and priority search trees, 2005.
[19] J. Matoušek, Geometric range searching, ACM Computing Surveys (CSUR), 26 (1994), pp. 422–461.
[20] L. McInnes, J. Healy, N. Saul, and L. Großberger, Umap: uniform manifold approximation and

projection, The Journal of Open Source Software, 3 (2018), p. 861.
[21] S. MERKULOV, Hatcher, a. algebraic topology (cambridge university press, 2002), Proceedings of the

Edinburgh Mathematical Society, 46 (2003), pp. 511–512.
[22] R. G. Miller, Discussion: Projection pursuit, The Annals of Statistics, 13 (1985), pp. 510–513.
[23] M. Minkov and G. Hofstede, Hofstedes fifth dimension: New evidence from the world values survey,

Journal of cross-cultural psychology, 43 (2012), pp. 3–14.
[24] E. Munch, A users guide to topological data analysis, Journal of Learning Analytics, 4 (2017), pp. 47–61.
[25] E. Munch and B. Wang, Convergence between categorical representations of reeb space and mapper,

arXiv preprint arXiv:1512.04108, (2015).
[26] J. R. Munkres, Topology, Prentice Hall, 2000.
[27] M. H. Overmars, The design of dynamic data structures, vol. 156, Springer Science & Business Media,

1987.
[28] R Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical

https://doi.org/10.18637/jss.v040.i08
http://www.jstatsoft.org/v40/i08/
http://www.jstatsoft.org/v40/i08/

EFFICIENT MULTI-SCALE SIMPLICIAL COMPLEX GENERATION FOR MAPPER 33

Computing, Vienna, Austria, 2013, http://www.R-project.org/.
[29] S. J. Sheather, Density estimation, Statistical science, (2004), pp. 588–597.
[30] G. Singh, F. Mémoli, and G. E. Carlsson, Topological methods for the analysis of high dimensional

data sets and 3d object recognition., in SPBG, 2007, pp. 91–100.
[31] H. Trevor, T. Robert, and F. JH, The elements of statistical learning: data mining, inference, and

prediction, 2009.
[32] Y. Yao, J. Sun, X. Huang, G. R. Bowman, G. Singh, M. Lesnick, L. J. Guibas, V. S. Pande, and

G. Carlsson, Topological methods for exploring low-density states in biomolecular folding pathways,
The Journal of chemical physics, 130 (2009), p. 04B614.

Supplementary material.

Mapper Ring Data Example. To further illustrate Mapper, consider the example given
by Singh et. al in [30], shown in Figure 5. The left figure displays the ring data X in R2.
The filter function f used computes the distance of every point x ∈ X to the left-most point
p, resulting in a filter space in R. This filter space is shown in the center figure, from which
a covering is constructed of 5 sets, each with 20% overlap (the points lie in the filter space
are not shown). The right figure shows the resulting 1-skeleton of the constructed simplicial
complex, represented as a graph G.

Torus Example. Torus explanation.

http://www.R-project.org/

34 MATT PIEKENBROCK, DEREK DORAN, AND RYAN KRAMER

[0-1]

Z ⊂ R

Interval Length: 1Overlap: 20%

Z Range: [0 − 4.2]

[0.8-1.8]

[1.6-2.6]

[2.4-3.4]

[3.2-4.2]

X = {x1, x2, . . . , xn} f(x) = kx � pk2 G(V, E)

Figure 5: Mapper ring data example discussed in Example 1.1. In this example, Z ∈ R
represents the distance from each point xi ∈ X to the point with the smallest coordinate in
X(1), i.e. the “left-most” point. Note how the three inner intervals resulted in two clusters
each, which connect at each end point to a single cluster in the first and last intervals, forming
a ring.

Figure 6: The mapper was built by projecting the torus data X ⊂ R30 to Z ⊂ R2 with UMAP.
Node positions were estimated using multidimensional scaling on a smooth approximation of
haussdorff distance. The colors of the nodes reflect first and second dimensions of the filter,
respectively.

EFFICIENT MULTI-SCALE SIMPLICIAL COMPLEX GENERATION FOR MAPPER 35

Figure 7: The mapper was built by projecting the torus data X ⊂ R30 to Z ⊂ R2 with
Laplacian eigenmaps. Node positions were estimated using multidimensional scaling on a
smooth approximation of haussdorff distance. The colors of the nodes reflect first and second
dimensions of the filter, respectively.

	Background
	Simplicial Complex
	Covers
	Other notation

	Mapper
	Algorithmic description
	Cover Parameterization
	Multiresolution Structure

	Main Results Overview
	Methodology
	Computing cover parameters
	Computing the level sets
	Computing Point Assignments as r Changes
	Computing the simplicial complexes
	Generalizing to higher dimensions

	Algorithms
	Experimental Results
	Experiments

	Related Work
	Conclusion and Future Work
	Proofs
	Derivations
	Restrained cover
	Fixed-centroid cover

