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Abstract: Using a duality result between persis-
tence diagrams and persistence measures, we intro-
duce a framework for constructing families of con-
tinuous relaxations of the persistent rank invariant
for parametrized families of persistence vector spaces
indexed over the real line. Like the rank invariant,
these families obey inclusion-exclusion, are derived
from simplicial boundary operators, and encode all
the information needed to construct a persistence
diagram. Unlike the rank invariant, these spectrally-
derived families enjoy a number of stability and con-
tinuity properties typically reserved for persistence
diagrams, such as smoothness and di↵erentiability
over the positive semi-definite cone. Leveraging a
connection to combinatorial Laplacian operators, we
find the non-harmonic spectra of our proposed relax-
ation encode valuable geometric information about
the underlying space, prompting several avenues for
geometric data analysis.

Background: Persistent homology pipelines typ-
ically follow a well-established pattern: given an
input data set X, construct a filtration (K, f) from
X such that useful topological or geometric informa-
tion may be profitably gleaned from its persistence
diagram—a multiset summary of (K, f) constructed
by pairing homological critical values {ai}ni=1 with
non-zero multiplicities µi,j
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By pairing simplices using homomorphisms between
homology groups, diagrams demarcate homological
features succinctly. The essential quality of persis-
tence is that this pairing exists, is unique, and is sta-
ble under additive perturbations [5]. Persistence is
the de facto connection between homology and the
application frontier.

Though theoretically sound, diagrams su↵er from
several practical issues: they are sensitive to strong
outliers, far from injective, expensive to compute,
and expensive to compare. Practitioners have tack-
led some of these issues by equipping diagrams with

additional structure by way of maps to function
spaces—examples include persistence landscapes [2]
and references therein. These diagram vectorizations
have proven useful for learning applications due to
their stability and metric configurability. The scal-
ability issue remains exacerbated though, as these
vectorizations require diagrams as part of their input.

Approach: Rather than adding structure to pre-
computed diagrams, we propose a spectral method
that performs both steps, simultaneously and approx-
imately. Our approach constructs a vector-valued
mappings over a parameter space A ⇢ Rd:

(X↵,R, ✏, ⌧) 7! RO(|R|)

where {X↵}↵2A is an A-parametrized family of data
sets, R ⇢ �+ a rectilinear sieve over the upper
half-plane �+, and (✏, ⌧) 2 R2

+ are approxima-
tion/smoothness parameters, respectively. Our strat-
egy is motivated by measure-theoretic perspectives on
R-indexed persistence modules [3, 4], which general-
ize µi,j

p
to arbitrary corner points ( ı̂, |̂ ) 2 �+:
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and also by a technical observation that shows the
multiplicity function is expressible as a sum of unfac-
tored boundary operators @p : Cp(K) ! Cp�1(K)—
that is, given a fixed p � 0, a filtrationK = {Ki}i2[N ]

of size N = |K|, and a rectangle R = [i, j] ⇥ [k, l] ⇢
�+, the p-th multiplicity µR

p
of K is given by:
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where @i,j
p

denotes the lower-left submatrix of @p de-
fined by the first j columns and the lastm�i+1 rows.
An explicit proof of this can be found in [6], though it
was also noted in passing by Edelsbrunner [7]—it can
proved by combining the Pairing Uniqueness Lemma
with the fact that left-to-right column operations pre-
serves the ranks of “lower-left” submatrices. Though
often used to show the correctness of the reduction
algorithm from [7], the implications of this fact are
quite general, as noted recently by Bauer et al. [1]:

Proposition 1 ([1]). Any persistence algorithm
which preserves the ranks of the submatrices @i,j(K•)
for all i, j 2 [N ] is a valid persistence algorithm.
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Figure 1: (Left) Vineyards analogy of diagrams at ‘snapshots’ over time; (middle) vineyard curves flattened
with a sieve R ⇢ �+; (right) the integer-valued multiplicity function µR

p
(f↵) as a function of time ↵ 2 R

(top) and a real-valued spectral relaxation (bottom)

Spectral rank invariant: Our proposed mapping
exploits proposition 1 via a spectral characterization
of µR

p
. In particular, let K denote a fixed simpli-

cial complex constructed from a data set X and f↵ a
continuous filter function satisfying, for all ↵ 2 A:

(K, f↵) , { f↵ : K ! R | f↵(⌧)  f↵(�), ⌧ ✓ � 2 K}
Our methods inputs are (K, f↵), a sieveR ⇢ �+, and
parameters (✏, ⌧) 2 R2

+ representing how closely and
smoothly the relaxation should model the quantity:
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The intuition is that R filters and summarizes topo-
logical and geometric behavior exhibited by X↵ for
all ↵ 2 A, thereby sifting the space A ⇥ �+. Our
proposed approximation first associates a normalized
combinatorial Laplacian operator L : Cp(K,R) !
Cp(K,R) to the corner points on the boundary of R.
Then, for some v 2 span(1)?, we restrict and project
L onto the following Krylov subspace:

Kn(L, v) , span{v,Lv,L2v, . . . ,Ln�1v}
We can show (1) the eigenvalues of T = projKL

��
K

provide an (1� ✏)-approximation of µR
p
(f↵), and (2)

varying ⌧ > 0 yields a family of spectral operators
whose Schatten-1 norms are Lipshitz continuous, sta-
ble under relative perturbations, and di↵erentiable on
the positive semi-definite cone. Moreover, as the pa-
rameters ✏ and ⌧ approach zero, the multiplicity µi,j

p

is recovered exactly.
Unlike existing dynamic persistence algorithms,

our approach requires no complicated data struc-
tures or maintenance procedures to implement, can
be made matrix-free, and is particularly e�cient to
compute over parameterized families of inputs. We
defer the formal analysis, properties, and applications
of the method to full1 paper, in preparation.
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1The paper in preparation can be found at: https://github.com/peekxc/pbsig/blob/main/notes/pbsig.pdf
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