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Abstract: Using a duality result between persis-
tence diagrams and persistence measures, we intro-
duce a framework for constructing families of con-
tinuous relaxations of the persistent rank invariant
for parametrized families of persistence vector spaces
indexed over the real line. Like the rank invariant,
these families obey inclusion-exclusion, are derived
from simplicial boundary operators, and encode all
the information needed to construct a persistence
diagram. Unlike the rank invariant, these spectrally-
derived families enjoy a number of stability and con-
tinuity properties typically reserved for persistence
diagrams, such as smoothness and differentiability
over the positive semi-definite cone. Leveraging a
connection to combinatorial Laplacian operators, we
find the non-harmonic spectra of our proposed relaz-
ation encode valuable geometric information about
the underlying space, prompting several avenues for
geometric data analysis.

Background: Persistent homology pipelines typ-
ically follow a well-established pattern: given an
input data set X, construct a filtration (K, f) from
X such that useful topological or geometric informa-
tion may be profitably gleaned from its persistence
diagram—a multiset summary of (K, f) constructed
by pairing homological critical values {a;}? ; with
non-zero multiplicities i’ or Betti numbers 357 [5)]:

dgm, (f) £ {(ai,a;) : p? #0} U A

2 (B = 5) — (55 = 5y
By pairing simplices using homomorphisms between
homology groups, diagrams demarcate homological
features succinctly. The essential quality of persis-
tence is that this pairing exists, is unique, and is sta-
ble under additive perturbations [5]. Persistence is
the de facto connection between homology and the
application frontier.

Though theoretically sound, diagrams suffer from
several practical issues: they are sensitive to strong
outliers, far from injective, expensive to compute,
and expensive to compare. Practitioners have tack-
led some of these issues by equipping diagrams with
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additional structure by way of maps to function
spaces—examples include persistence landscapes [2]
and references therein. These diagram vectorizations
have proven useful for learning applications due to
their stability and metric configurability. The scal-
ability issue remains exacerbated though, as these
vectorizations require diagrams as part of their input.

Approach: Rather than adding structure to pre-
computed diagrams, we propose a spectral method
that performs both steps, simultaneously and approx-
imately. Owur approach constructs a vector-valued
mappings over a parameter space A C R%:

(Xa,R,€,7) — ROURD

where {X, }aca is an A-parametrized family of data
sets, R C AL a rectilinear sieve over the upper
half-plane A, and (e,7) € Ri are approxima-
tion/smoothness parameters, respectively. Our strat-
egy is motivated by measure-theoretic perspectives on
R-indexed persistence modules [3] 4], which general-
ize iy’ to arbitrary corner points (i,7) € Ay:

,u;,j _ Ig]g (ﬂ;ﬂs,j-é _ 5;+5,j+5)_(ﬁzi7—5,j-6 _ 62—6,j+5)
and also by a technical observation that shows the
multiplicity function is expressible as a sum of unfac-
tored boundary operators 9, : Cp(K) — Cp_1(K)—
that is, given a fixed p > 0, a filtration K = {K; };c(n
of size N = |K|, and a rectangle R = [i, j] x [k,l] C
A, the p-th multiplicity ,uf of K is given by:

aj+1,k 0 ai+1,k 0
Mf = rank l pg §itLl — rank p61 Py

p+1 p+l

where 9}/ denotes the lower-left submatrix of 9, de-
fined by the first j columns and the last m—i+1 rows.
An explicit proof of this can be found in [6], though it
was also noted in passing by Edelsbrunner [7]—it can
proved by combining the Pairing Uniqueness Lemma
with the fact that left-to-right column operations pre-
serves the ranks of “lower-left” submatrices. Though
often used to show the correctness of the reduction
algorithm from [7], the implications of this fact are
quite general, as noted recently by Bauer et al. [1]:

Proposition 1 ([I]). Any persistence algorithm
which preserves the ranks of the submatrices 07 (K,)
for alli,j € [N] is a valid persistence algorithm.
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(Left) Vineyards analogy of diagrams at ‘snapshots’ over time; (middle) vineyard curves flattened

with a sieve R C Ay; (right) the integer-valued multiplicity function /15( fa) as a function of time o € R

(top) and a real-valued spectral relaxation (bottom)

Spectral rank invariant: Our proposed mapping
exploits proposition [1| via a spectral characterization
of ,uf'. In particular, let K denote a fixed simpli-
cial complex constructed from a data set X and f, a
continuous filter function satisfying, for all « € A:

(K, fo) 2 {fa: K =R | fo(7) < falo),7 Co € K}

Our methods inputs are (K, f,), asieve R C A, and
parameters (¢,7) € Rf_ representing how closely and
smoothly the relaxation should model the quantity:

,u;z(fa) £ {card (dgmp(fa)|R) | € A}

The intuition is that R filters and summarizes topo-
logical and geometric behavior exhibited by X, for
all @ € A, thereby sifting the space A x Ay. Our
proposed approximation first associates a normalized
combinatorial Laplacian operator £ : CP(K,R) —
CP?(K,R) to the corner points on the boundary of R.
Then, for some v € span(1)~+, we restrict and project
L onto the following Krylov subspace:

Ko (L,v) £ span{v, Lv, L2v,. .., L7 v}

We can show (1) the eigenvalues of T' = proj,C£|lC
provide an (1 — €)-approximation of uX(fs), and (2)
varying 7 > 0 yields a family of spectral operators
whose Schatten-1 norms are Lipshitz continuous, sta-
ble under relative perturbations, and differentiable on
the positive semi-definite cone. Moreover, as the pa-
rameters € and 7 approach zero, the multiplicity ,uﬁ;j
is recovered exactly.

Unlike existing dynamic persistence algorithms,
our approach requires no complicated data struc-
tures or maintenance procedures to implement, can
be made matriz-free, and is particularly efficient to
compute over parameterized families of inputs. We
defer the formal analysis, properties, and applications
of the method to ful paper, in preparation.
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IThe paper in preparation can be found at: https://github.com/peekxc/pbsig/blob/main/notes/pbsig.pdf
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