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I. ABSTRACT

Bayesian networks are directed acyclic graphs (DAGS) that
represent dependencies between variables in a probabilistic
model. Adaptive Bayesian Networks are often used for general
world modeling, where legitimate conclusions can be drawn
for any state in the world being modeling, given the current
knowledge about the world. First, a brief introduction on con-
ditional probability rules and Bayesian networks construction
methods is given. The exact formulation of how Bayesian
Networks are constructed is examined in the Methodology
section. A small conclusion section adds a small discussion
some of the recent work that has been done in terms of model
selection.

II. INTRODUCTION

Probabilistic Graphical Models–using graphs to express the
conditional dependency structure between random variables–
has been called "the marriage of probability theory and graph
theory"[1]. Whereas the phenomenon of complex systems can
be modeled through modern fields such as Network Science,
Bayesian Networks are graphical models that allow for efficient
representations of the dependency structures that drive such
systems. Modern BNMs constitute a framework for general
world modeling in such a way that is not only mathematically
rigorous, but is also adaptable and scalable to modern day
problems. Bayesian Networks have been used to forecast short-
term traffic patterns before[2][3]. They have also been proved
useful in diagnosing medical diseases [4], predicting stock
prices fluctuations [5], and in several classification applications
[6]. Bayesian Network Analysis techniques have even been
used to analyze flight delays before[7]. In the following sec-
tion, I review the basics of a Bayesian Network representation.
I establish some of the basic definitions used within the field,
and then I introduce the two primary methodologies used to
automatically train a Bayesian Network. I then go over some
of the popular algorithmic implementations of such training
methods, and discuss the advantages and disadvantages of
both. Finally, I conclude with with a small discussion of the
general methods preferred for model-selection.

A. Bayesian Network Representation
Predictive modeling is fundamentally rooted in the field

of probability theory. A simple way of modeling the states
of a world would be through the use of a joint probability
distribution that accounts for every state of every combination
of every random variable (knowledge) within a system. For n

discrete random variables X1, X2,… , Xn, the joint probability
mass function would be defined as:

P (X1 = x1, X2 = x2,… , Xn = xn)

Knowing the joint probability distribution (JPD) of a set of
random variables (RV) allows one to model any outcome
of the world encoded by those random variables. That is,
given a JPD, one can answer all possible inference queries
by marginalization. Unfortunately, the joint probability distri-
bution of even a small number of RVs is computationally
expensive to manipulate and usually too large to store in
memory [8]. Furthermore, due to the extraordinary larger pos-
sible number of combinations that are intrinsically a result of
computing joint probabilities (2n possible RV combinations for
n binary-valued random variables), the resulting probabilities
for many RV assignments are extremely small, translating to
an unintuitive solution when modeling future events[8]. It is
possible, however, to simplify the representation of a JPD if
there exists independence between RVs:

P (X = x, Y = y) = P (X = x)P (Y = y)

Using the chain rule of probability, a JPD can also be
represented as the product of conditional probability functions,
as follows:

P (X1 = x1, X2 = x2,… , Xn = xn) =

P (X1 = x1)×

P (X2 = x2|X1 = x1)×

P (X3 = x3|X2 = x2, X1 = x1)×

P (Xn = xn|X1 = x1, X2 = x2,… , Xn−1 = xn−1)

This idea can be extended when one RV can be used
to "explain away" [9] another RV by exploiting conditional
independence. That is, X and Y are conditionally independent
given Z if:

P (X = x, Y = y|Z = z) =

P (X = x|Z = z) ⋅ P (Y = y|Z = z)

But collectively utilizing these factorization rules, a compact
representation of the joint probability distribution can be
constructed by learning the conditional independence structure
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over a set of random variables1. These conditional inde-
pendence (CI) assumptions can be encoded into a DAG G,
where nodes represent random variables and directed edges
represent the conditional dependencies between them. The
network structure along with the product of each random
variable’s conditional probability distribution (CPD) is called
a Bayesian Network (BN).

B. Learning the conditional independence structure
Constructing a Bayesian Network is fundamentally done in

one of two ways:
1) Manually specifying the relational structure (CPDs) be-

tween the RVs of interest and then estimating the optimal
parameters for each distribution, or

2) Learning the CI network structure through applied
structure-learning analysis of tℎe data itself

While the first is simpler to implement and may lead to
better results if a domain expert is involved or if the data is
considered vastly incomplete, the latter is preferred when one
of the goals is knowledge discovery[8]. Additionally, in the
context of structure-based learning methods, there are three
primary approaches that are used to learn the structure of a
Bayesian Network, given a dataset:

1) Constraint-based learning

2) Score-based learning

3) Bayesian model averaging

It’s important to mention that sometimes a hybrid ap-
proach is taken to BN construction, where some conditional
(in)dependencies are "blacklisted" or "whitelisted" based on
some a priori domain knowledge. Furthermore, the third
approach to BN structure-learning is called Bayesian model
averaging; this approach does not attempt to learn a single
structure, but rather when probability queries (predictions) are
generated, they are averaged over a set of possible Bayesian
Network structures (the set is determined by varying the CI
test(s) � levels). Koller & Friedman note this in their book,
stating: "The space of Bayesian Networks is a combinatorial
space, consisting of a superexponential number of structures –
2O(n2). ...Since the number of structures is immense, perform-
ing this task seems impossible. For some classes of models
this can be done efficiently, and for others we need to resort
to approximations." [8] For these reasons, only a subset of the
constraint-based and score-based structure learning algorithms
were used of this project, as outlined more in detail in the
experimental results portion of this report.

C. Markov Blanket
Learning the structure of a BN primarily involves finding

a specific substructure for each RV in the JPD called the
Markov Blanket[10]. In order to be a proper Bayesian

1In both primary types of structure learning (see below), hypothesis tests are
used to test for conditional independence, as opposed to causal dependence.

Network, for some JPD P over a set of random variables V and
a DAG G = (V ,E), (G, P ) must satisfy the Markov condition
for every variable X ∈ V such that {X} is conditionally
independent of the set of all of its non-descendants NDX
given the set of all of its parents PAX [9]. That is:

IP ({X}, NDX ∣ PAX)

Put more simply, a node is conditionally independent of
its non-descendants, given its parents. An example of what a
Markov Blanket would look like for a RV A in a Bayesian
Network is given in figure 1 below.

Figure 1: Markov Blanket of RV A

Knowing the optimal (minimal) Markov Blanket for the
complete set of RVs is extremely important, as all of the RVs
within the Markov blanket of a given RV encompass all of
knowledge needed to predict the behavior of the latter RV.
This is discussed in both "Learning Bayesian Networks"[9] and
"Probabilistic Graphical Models"[8] in further detail. Thus, in
the BN represented in figure 1, prediction of A only requires
previous knowledge (data) of RVs {B,C,D,H,E}. Removing
nodes, even (non-parent) ancestors, outside a specific target
RVs’ Markov Blanket will not effect predictions of the future
behavior of the target RV, because the target RV (A) is
"shielded" from the downward propagation of conditional
probability queries. The intuitive reasoning behind this is
discussed more in the Constraint-based Learning section
below.

III. METHODOLOGY

A Bayesian Network is defined as a directed acyclic graph
(DAG) G(V ,E) whose nodes (V ) represent the random vari-
ables (RV) in some domain of interest and whose edges (E)
encode the conditional dependencies between them. Directed



edges, thus, represent the direct influence of RVs onto other
RVs. The structure of a Bayesian Network also encodes the
set of conditional independence assumptions within a JPD.
Learning the conditional independence (CI) structure of a BN
is not a trivial process, and there are multiple algorithms that
have been developed to do so. The two primary types of
CI structure learning are presented below: Constraint-Based
Learning, and Score-Based Learning.

A. Constraint-based Learning
Constraint-based learning methods focus on finding the

minimal Markov blanket of some target RV through a series
of conditional independence (CI) tests. That is, the markov
blanket of a variable of interest T is the minimal set of other
RVs T is conditioned on such that all other RVs not in the
markov blanket are conditionally independent of T . There are
two constraint-based learning algorithms that were used to
construct a BN for this project:
1) Grow-Shrink [11] := Markov blanket detection test that

consists of a growing phase (where RVs are admitted
if they fail the CI tests) and a shrinking phase (where
previously RVs are removed due to "shielding" effect).
CI testing done in an arbitrary order.

2) Incremental-Association [12] := Markov blanket detec-
tion test that performs multiple CI tests between RVs,
iteratively removing RVs in the Markov Blanket in an
interleaved fashion.

Grow-Shrink Algorithm: The Grow-Shrink algorithm is a
two-phase algorithm that relies on pairwise CI tests to grow
the Markov Blanket for some target variable T , and then in
the end the Markov Blanket is sℎrunk to remove RVs that
were "explained away" from a RV introduced towards the end
of the growing phase. To illustrate this, here is a summary is
the grow-shrink algorithm on some target RV T = A over a
set of RVs V = {B, F ,G, C,K,D,H,E,L}:
1) Given a RV A with an empty Markov blanket S = , begin

a pairwise conditional independence (CI) hypothesis test
over V (order is arbitrary)

2) Test A ⫫ B ∣ {}. If the test fails, then add B to S,
otherwise move to next RV. Assume in this case the test
fails (A and B are not conditionally independent).

3) Next test A ⫫ F ∣ {B}; if the test fails, add F to A’s
Markov blanket S

4) Continue pairwise CI tests until all other RVs have been
tested

The previous algorithm is known as the growing pℎase, since
RVs are constantly being added the Markov Blanket of A. It
is noticeable that, since each CI test depends on the previous
RVs that were tested for conditional independence, the order
in which RVs are added to A’s Markov blanket depends on
the order that they are tested. Furthermore, because of this, it
is possible that RVs that were previously added to the Markov
blanket are conditionally "explained away"2. The dependency

2See the "Bayesian Network Representation" section of this report for a
better explanation of a variable being "explained away"

that may have existed given a different set of RVs (given
alternative prior knowledge) may or may not be uncovered.
Because of this, a sℎrinking pℎase is needed to do a final
pass to uncover A’s minimal Markov Blanket:
1) Test A ⫫ X ∣ {S ⧵X} where X is one of the RVs in S

(except in the current test)
2) If the test returns true, remove X from S

Finally, this process is repeated for all other RVs. It’s important
to note that this algorithm assumes Faitℎfulness, where the
CI test with a pre-specified p-value is assumed to be an
accurate depiction of the conditional independence that exists
between the RVs being tested. A more detailed explanation of
the grow-shrink algorithm can be found in Dimitris’ original
PhD thesis[11].
Incremental Association: Another popular constraint-based

algorithm that was used in this project is called the incremental
association algorithm (IAMB). The incremental association
algorithm theoretically resembles the Grow-Shrink algorithm
in that it consists of two-phases, one of which adds RVs
to the Markov Blanket and another that removes (called
the backward-conditioning) RVs from the Markov Blanket,
however in comparison with the Grow-Shrink (GS) algorithm,
IAMB iteratively interleaves backward-conditioning for each
forward-selection phase (CI testing + Markov Blanket expan-
sion) to reduce the type I error associated with the Markov
Blanket being constructed for the target node. This was moti-
vated by the fact that, "the smaller the conditioning test given a
finite sample of fixed size, the more accurate the statistical tests
of independence and the measure of associations."[11]. It’s
noted further than one visual improvement one might see using
IAMB compared to GS is that strong (potential) spouses that
have common children are entered into the Markov Blanket
earlier on, improving the strength of the subsequent CI tests.
The pseudo-code for the IAMB algorithm is given below:

Phase I (forward)
CMB = ∅
While CMB has changed:
Find the feature X in V − CMB − {T }

that maximizes f (X; T ∣ CMD)
If not I(X; T ∣ CMB)

Add X to CMB
End If

End While
Phase II (backwards)
Remove from CMB all variables X,

for which I(X; T ∣ CMB − {X})
Return CMB

B. Score-based Algorithms
An alternative approach to automatically learning the struc-

ture of Bayesian Networks is through the use of score-based
learning algorithms. Score-based approaches treat the problem
of BN learning as an optimization problem over a ℎypotℎesis
space–a set of possible BN networks. Each [Bayesian] network



in the hypothesis space is scored against some objective
function[8]. There are two primary categories of scoring
functions, either Bayesian or Information-tℎeoretic scoring
functions.

In Bayesian scoring methods, the set of possible Bayesian
Networks makes up a prior probability distribution, and the
best Bayesian Network B is the one that maximizes the
posterior probability given the dataset T , max(P (B|T )).
In information-tℎeoretic scoring functions, rather than

maximizing the posterior probability of the hypothesis space
of BNs given the data max(P (B|T )), the information content
of T induced by the distribution of BNs B is measured as
a heuristic. All information-theoretic scoring functions were
based on Claude Shannon’s original definition of information
and his related concept of Entropy[13]. In this research, only
information-theoretic were considered due to their effective-
ness and familiarity. There are several objective functions often
used in scoring functions:
1) Log-likelihood
2) Akaike Information Criterion [14]
3) Minimum Description Length/Bayesian Information Cri-

terion [15]
One oft-used information-theoretic scoring function is the

log-likelihood function (LL):

LL(T ∣ B) =
n
∑

i=1

qi
∑

j=1

ri
∑

k=1
Nijk log

Nijk

Nij

ri represents the number of states of a RV Xi, qi is the
product of every ri for every possible combination of parent
RVs to the current RV (qi =

∏

Xj∈
∏

Xi

rj), Nijk represents the

number of instances in the data T where the variable Xi takes
on the k-th value xik and the RVs in the parent set take
on some j-th configuration of

∏

Xi
(1 ≤ j ≤ qi). For further

details, see the original paper[16] by Alexandra M. Carvalho
that summarizes these measures and the effects they have on
constructing Bayesian Networks.

All three of mentioned measures can be used interchange-
ably with the previous equation to measure the "quality" of the
space of potential BN configurations through a general form:

�(B ∣ T ) = LL(B ∣ T ) − f (N)|B|

Where f (N) represents the penalization function. If f (N) =
1, the BNs are evaluated according to their Akaike Information
Criterion (AIC), if f (N) = 1

2 log(N), the optimization is with
respect to the Bayesian Information Criterion (BIC), and if
f (N) = 0, then it’s just the normal log-likelihood evaluation.

IV. CONCLUSION

The concludes a brief overview of the concepts of automat-
ically training a basic Bayesian Network, including some of
the research efforts that have been done on model selection
and training strategies.
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